首页> 外文期刊>Foundations of Computational Mathematics >Fast Linear Homotopy to Find Approximate Zeros of Polynomial Systems
【24h】

Fast Linear Homotopy to Find Approximate Zeros of Polynomial Systems

机译:快速线性同伦找到多项式系统的近似零

获取原文
获取原文并翻译 | 示例

摘要

We prove a new complexity bound, polynomial on the average, for the problem of finding an approximate zero of systems of polynomial equations. The average number of Newton steps required by this method is almost linear in the size of the input (dense encoding). We show that the method can also be used to approximate several or all the solutions of non-degenerate systems, and prove that this last task can be done in running time which is linear in the Bézout number of the system and polynomial in the size of the input, on the average.
机译:对于找到多项式方程组的近似零的问题,我们证明了一个新的复杂度边界,即多项式平均。此方法所需的牛顿步数平均数在输入大小(密集编码)中几乎是线性的。我们证明了该方法还可以用于近似非退化系统的几个或所有解,并证明该最后一项任务可以在运行时间内完成,该运行时间在系统的Bézout数上是线性的,而在多项式的大小上是多项式平均而言。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号