首页> 外文期刊>Expert systems with applications >Value-at-risk backtesting: Beyond the empirical failure rate
【24h】

Value-at-risk backtesting: Beyond the empirical failure rate

机译:价值 - 风险反击:超出经验失败率

获取原文
获取原文并翻译 | 示例

摘要

The quality of Value at Risk (VaR) forecasts is typically determined by the empirical assessment of the frequency of VaR misspecifications. Additionally, the risk of clustered VaR misspecification over time, especially in volatile market times, is usually assessed within a joint testing framework.In this paper, we exclusively focus on the identification of clustered VaR misspecficiations and discuss competing backtesting procedures with respect to their ability to detect inadequate VaR models that are characterized by risk clustering.We present a simulation analysis which comprises different VaR scenarios and we find that the quality of competing backtesting procedures depends on the underlying sample size. Moreover, if sample size is small, it is the parsimonious F-test which describes a sensible choice for applied VaR assessment.
机译:风险(VAR)预测的价值质量通常由var误操作频率的实证评估确定。 此外,通常在联合测试框架内评估随着时间的推移,特别是在挥发性市场时间内的聚类var误操作的风险通常。本文专注于识别集群的var isspecficiations,并讨论竞争其能力的竞争反垄断程序 检测风险集群特征的不足模式.WE呈现了一种模拟分析,包括不同的VAR场景,我们发现竞争反向程序的质量取决于潜在的样本大小。 此外,如果样品大小很小,则描述了用于应用VAR评估的明智选择的ParsiMoirive F-Test。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号