首页> 外文期刊>Expert systems with applications >WiFiNet: WiFi-based indoor localisation using CNNs
【24h】

WiFiNet: WiFi-based indoor localisation using CNNs

机译:Wifinet:基于WiFi的室内本地化使用CNNS

获取原文
获取原文并翻译 | 示例

摘要

Different technologies have been proposed to provide indoor localisation: magnetic field, Bluetooth, WiFi, etc. Among them, WiFi is the one with the highest availability and highest accuracy. This fact allows for an ubiquitous accurate localisation available for almost any environment and any device. However, WiFi-based localisation is still an open problem.In this article, we propose a new WiFi-based indoor localisation system that takes advantage of the great ability of Convolutional Neural Networks in classification problems. Three different approaches were used to achieve this goal: a custom architecture called WiFiNet, designed and trained specifically to solve this problem, and the most popular pre-trained networks using both transfer learning and feature extraction.Results indicate that WiFiNet is as a great approach for indoor localisation in a medium-sized environment (30 positions and 113 access points) as it reduces the mean localisation error (33%) and the processing time when compared with state-of-the-art WiFi indoor localisation algorithms such as SVM.
机译:已经提出了不同的技术提供室内定位:磁场,蓝牙,WiFi等,WiFi是具有最高可用性和最高精度的WiFi。这一事实允许几乎任何环境和任何设备都可以提供无处不在的准确定位。然而,基于WiFi的本地化仍然是一个开放的问题。在本文中,我们提出了一种新的基于WiFi的室内本地化系统,利用了卷积神经网络在分类问题中的巨大能力。使用三种不同的方法来实现这一目标:一种称为Wifinet的自定义架构,专门设计和培训专门用于解决这个问题,以及使用转移学习和特征提取的最受欢迎的预训练网络。结果表明Wifinet是一种很好的方法对于中等环境(30个位置和113个接入点)的室内定位,因为它减少了与诸如SVM之类的最先进的WiFi室内定位算法相比的平均本地化误差(33%)和处理时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号