首页> 外文期刊>IEEE transactions on mobile computing >SWIM: Speed-Aware WiFi-Based Passive Indoor Localization for Mobile Ship Environment
【24h】

SWIM: Speed-Aware WiFi-Based Passive Indoor Localization for Mobile Ship Environment

机译:游泳:速度感知基于WiFi的无源室内定位,用于移动船舶环境

获取原文
获取原文并翻译 | 示例

摘要

Accurate and pervasive device-free indoor localization with meter-level resolution is critical for large cruise and passenger ships due to safety-critical rescue and evacuation requirements when accidents occur. However, existing localization techniques would severely suffer on ships because of their unique mobility characteristics. In this paper, we take the first attempt to build a ubiquitous passive localization system using WiFi fingerprints for the mobile ship environment. By conducting extensive experiments and measurements during several cruise trips, we identified a major influence factor on the fingerprints in the mobile environment: varying the ship speeds may significantly change the patterns of fingerprints at runtime. Since it may be too expensive to identify the fingerprints associated with different speeds, we propose an efficient localization method, namely SWIM, which calibrates the fingerprints from only a single-speed scenario to multiple-speed scenarios using a signal reconstruction analysis. SWIM is designed to learn the predictive fingerprint variation introduced by environmental speed changes and reconstruct the original fingerprints to adapt to the runtime speed scenarios. We have implemented and extensively evaluated SWIM on actual cruise ships. Experimental results demonstrate that SWIM improves localization accuracy from 63.2 to 82.9 percent, while reducing the overall system deployment cost by 87 percent.
机译:由于安全关键的救援和疏散要求,准确和普遍的无需仪表室内本地化,对于大型巡航和客运来说至关重要。然而,由于其独特的移动特性,现有的本地化技术将严重影响船舶。在本文中,我们首次尝试使用WiFi指纹为移动船舶环境建立无处不在的被动定位系统。通过在几个巡航旅行中进行广泛的实验和测量,我们确定了移动环境中指纹的主要影响因素:改变船舶速度可能会显着改变运行时的指纹模式。由于它可能太昂贵,无法识别与不同速度相关的指纹,因此提出了一种有效的本地化方法,即游泳,其使用信号重建分析仅从单速场景中校准指纹到多速场景。游泳旨在学习通过环境速度改变引入的预测指纹变化,并重建原始指纹,以适应运行时速度方案。我们在实际的游轮上实施和广泛评估了游泳。实验结果表明,游泳将本地化精度从63.2%提高到82.9%,同时将整体系统部署成本降低了87%。

著录项

  • 来源
    《IEEE transactions on mobile computing》 |2021年第2期|765-779|共15页
  • 作者单位

    Wuhan Univ Techol Sch Nav Wuhan 430063 Peoples R China;

    Wuhan Univ Techol Sch Nav Wuhan 430063 Peoples R China|Natl Engn Res Ctr Water Transport Safety Wuhan 430063 Peoples R China|Hubei Key Lab Inland Shipping Technol Wuhan 430063 Peoples R China;

    Wuhan Univ Techol Sch Nav Wuhan 430063 Peoples R China|Natl Engn Res Ctr Water Transport Safety Wuhan 430063 Peoples R China|Hubei Key Lab Inland Shipping Technol Wuhan 430063 Peoples R China;

    Visa Austin TX 78759 USA;

    Wayne State Univ Dept Comp Sci Detroit MI 48202 USA;

    Univ Texas Dallas Dept Comp Sci Dallas TX 75080 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Channel state information (CSI); device-free indoor localization; Mobile ship environment; WiFi;

    机译:频道状态信息(CSI);免费室内定位;移动船舶环境;WiFi;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号