首页> 外文期刊>Expert systems with applications >A comprehensive survey on deep neural networks for stock market: The need, challenges, and future directions
【24h】

A comprehensive survey on deep neural networks for stock market: The need, challenges, and future directions

机译:对股市深度神经网络的综合调查:需求,挑战和未来方向

获取原文
获取原文并翻译 | 示例

摘要

The stock market has been an attractive field for a large number of organizers and investors to derive useful predictions. Fundamental knowledge of stock market can be utilised with technical indicators to investigate different perspectives of the financial market; also, the influence of various events, financial news, and/or opinions on investors' decisions and hence, market trends have been observed. Such information can be exploited to make reliable predictions and achieve higher profitability. Computational intelligence has emerged with various deep neural network (DNN) techniques to address complex stock market problems. In this article, we aim to review the significance and need of DNNs in the field of stock price and trend prediction; we discuss the applicability of DNN variations to the temporal stock market data and also extend our survey to include hybrid, as well as metaheuristic, approaches with DNNs. We observe the potential limitations for stock market prediction using various DNNs. To provide an experimental evaluation, we also conduct a series of experiments for stock market prediction using nine deep learning-based models; we analyse the impact of these models on forecasting the stock market data. We also evaluate the performance of individual models with different number of features. We discuss challenges, as well as potential future research directions, and conclude our survey with the experimental study. This survey can be referred for the recent perspectives of DNN-based stock market prediction, primarily covering research spanning over years 2017-2020.
机译:股市一直是大量组织者和投资者的有吸引力的领域,以获得有用的预测。股票市场的基本知识可用于调查金融市场的不同观点的技术指标;此外,已经观察到各种事件,财务新闻和/或意见的影响,从而对投资者决策,市场趋势。可以利用此类信息来进行可靠的预测并实现更高的盈利能力。具有各种深度神经网络(DNN)技术的计算智能来解决复杂的股票市场问题。在本文中,我们的目标是在股价和趋势预测领域审查DNN的重要性和需要;我们讨论了DNN变异对时间股票市场数据的适用性,并扩展了我们的调查,包括混合动力,以及与DNN的方法。我们遵守使用各种DNN的股市预测的潜在限制。为了提供实验评估,我们还使用九种基于深度学习的模型进行一系列用于股票市场预测的实验;我们分析了这些模型对预测股票市场数据的影响。我们还评估具有不同功能数量的单个模型的性能。我们讨论挑战,以及潜在的未来研究方向,并与实验研究结束我们的调查。该调查可以参考DNN为基于DNN的股票市场预测的前景,主要涵盖2017 - 2010年多年来的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号