首页> 外文期刊>Expert systems with applications >Automated classification of five arrhythmias and normal sinus rhythm based on RR interval signals
【24h】

Automated classification of five arrhythmias and normal sinus rhythm based on RR interval signals

机译:基于RR间隔信号自动分类五种心律失常和正常窦性心律

获取原文
获取原文并翻译 | 示例

摘要

Arrhythmias are abnormal heart rhythms that can be life-threatening. Atrial Fibrillation (AFIB), Atrial Flutter (AFL), Supraventricular Tachycardia (SVT), Sinus Tachycardia (ST), and Sinus Bradycardia (SB) are common arrhythmias that affect a growing number of patients. In this paper we describe a method to detect these arrhythmias in RR interval signals. We propose a deep learning algorithm to discriminate these fife arrhythmias and Normal Sinus Rhythm (NSR). The deep learning model was trained and tested with data from 10093 subjects. We used 10-fold cross-validation to establish the performance results. The overall accuracy for the six-class problem was 98.37%. When considering the binary problem of arrhythmia versus NSR, where the arrhythmia group is formed by combining the data from all fife arrythmias, the performance results are: Accuracy (ACC) = 98.55%, Sensitivity (SEN) = 99.40%, Specificity (SPE) = 94.30%. These results indicate that it is possible to discriminate RR interval sequences from SVT, ST, SB, AFIB, AFL, and NSR subjects with minimal error. Furthermore, the proposed model can provide a robust and independent second opinion when it comes to a decision if arrhythmia is present or not. Another positive aspect of the proposed arrhythmia detection algorithm is economic viability. RR interval signals are cost-effective to measure, communicate, and process. The discriminate powers of the proposed algorithm together with the advent of wearable technology and m-health infrastructure might lead to pervasive long-term arrhythmia monitoring. The detection results can support early diagnosis which helps to reduce the burden of the disease.
机译:心律失常是可能是危及生命的心律的异常心律。心房颤动(AFIB),心房颤动(AFL),穗心心动过速(SVT),窦性心动过速(ST)和窦性计(SB)是影响越来越多的患者的常见心律失常。在本文中,我们描述了一种检测RR间隔信号中这些心律失常的方法。我们提出了一种深入的学习算法,以区分这些胃肠性心律失常和正常的窦性心律(NSR)。深度学习模式受到10093个科目的数据培训和测试。我们使用了10倍的交叉验证来建立性能结果。六级问题的整体准确性为98.37%。考虑到心律失常与NSR的二进制问题,其中通过将来自所有FIFE arrythmias的数据组成的心律失常组,性能结果是:精度(ACC)= 98.55%,敏感度(SEN)= 99.40%,特异性(SPE) = 94.30%。这些结果表明,可以以最小的误差来区分来自SVT,ST,SB,AFIB,AFL和NSR受试者的RR间隔序列。此外,如果存在的话,所提出的模型可以在决定中提供稳健和独立的第二种意见。提出的心律失常检测算法的另一个阳性方面是经济可行性。 RR间隔信号是衡量,通信和处理的经济有效。该算法的区分力量与可穿戴技术和M-Health基础设施的出现可能导致普及的长期心律失常监测。检测结果可以支持早期诊断,有助于降低疾病的负担。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号