首页> 外文期刊>Computer methods in biomechanics and biomedical engineering >Classification of normal sinus rhythm, abnormal arrhythmia and congestive heart failure ECG signals using LSTM and hybrid CNN-SVM deep neural networks
【24h】

Classification of normal sinus rhythm, abnormal arrhythmia and congestive heart failure ECG signals using LSTM and hybrid CNN-SVM deep neural networks

机译:使用LSTM和Hybrid CNN-SVM深神经网络分类正常窦性节律,异常心律失常和充血性心力衰竭ECG信号

获取原文
获取原文并翻译 | 示例

摘要

Effective monitoring of heart patients according to heart signals can save a huge amount of life. In the last decade, the classification and prediction of heart diseases according to ECG signals has gained great importance for patients and doctors. In this paper, the deep learning architecture with high accuracy and popularity has been proposed in recent years for the classification of Normal Sinus Rhythm, (NSR) Abnormal Arrhythmia (ARR) and Congestive Heart Failure (CHF) ECG signals. The proposed architecture is based on Hybrid Alexnet-SVM (Support Vector Machine). 96 Arrhythmia, 30 CHF, 36 NSR signals are available in a total of 192 ECG signals. In order to demonstrate the classification performance of deep learning architectures, ARR, CHR and NSR signals are firstly classified by SVM, KNN algorithm, achieving 68.75% and 65.63% accuracy. The signals are then classified in their raw form with LSTM (Long Short Time Memory) with 90.67% accuracy. By obtaining the spectrograms of the signals, Hybrid Alexnet-SVM algorithm is applied to the images and 96.77% accuracy is obtained. The results show that with the proposed deep learning architecture, it classifies ECG signals with higher accuracy than conventional machine learning classifiers.
机译:根据心脏信号有效监测心脏患者可以节省大量的生命。在过去的十年中,根据心电图信号的心脏病分类和预测对患者和医生来说都是非常重要的。在本文中,近年来,近年来初始窦性心律的分类(NSR)异常心律失常(ARR)和充血性心力衰竭(CHF)ECG信号的分类,已经提出了高精度和普及的深度学习架构。该建议的体系结构基于Hybrid AlexNet-SVM(支持向量机)。 96个心律失常,30 CHF,36个NSR信号,总共有192个ECG信号。为了证明深度学习架构的分类性能,ARR,CHR和NSR信号首先通过SVM,KNN算法进行分类,精度为68.75%和65.63%。然后,信号以LSTM(长短时间内存)为原始形式分类,精度为90.67%。通过获得信号的谱图,将混合AlexNet-SVM算法应用于图像,并且获得了96.77%的精度。结果表明,通过所提出的深度学习架构,它将通过比传统机器学习分类器更高的精度来对ECG信号进行分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号