首页> 外文期刊>Expert systems with applications >New hybrid genetic algorithms to solve dynamic berth allocation problem
【24h】

New hybrid genetic algorithms to solve dynamic berth allocation problem

机译:新的混合遗传算法解决动态泊位分配问题

获取原文
获取原文并翻译 | 示例

摘要

Berth allocation problem (BAP) is concerned to assign ships to port terminal positions, seeking to minimize the total service time and maximize the quay occupation. A dynamic model with special features is developed to deal with real scenarios from Port Administration of Paranagua and Antonina (APPA), located on the Brazilian coast. To solve the problem, this work proposes two metaheuristics comprise by a novel combination of genetic algorithm and an approximated dynamic programming employed as a local search. Two heuristics for solution space reductions, a confinement procedure in a reduced neighborhood, known as Corridor Method, and an elimination process for unpromising solution regions are designed for local search approach. Case studies present a problem complexity discussion and comparative analysis of the metaheuristics regarding two standard genetic algorithms. The computational experiments explore the optimal solutions for small instances and the best results, solutions variability, and probabilistic plots resorting by ten instances based on real data available by APPA. The results show the reliability of the metaheuristics to deal with large instances and tight schedules in busy port systems.
机译:泊位分配问题(BAP)涉及将船舶分配给港口终端位置,寻求最小化总服务时间并最大化码头占用。具有特殊功能的动态模型是开发的,以处理Paranagua和Antonina(Appa)的港口管理,位于巴西海岸。为了解决该问题,这项工作提出了通过遗传算法的新组合和所用作为本地搜索的近似动态编程的组合来构成两种成分训练。用于解决方案空间减少的两个启发式,减少邻域中的限制程序,称为走廊方法,以及用于非妥协解决方案区域的消除过程,用于本地搜索方法。案例研究呈现了关于两种标准遗传算法的成分训练的问题复杂性讨论和比较分析。计算实验探讨了小型实例的最佳解决方案以及基于Appa可用的真实数据的十个实例求出的最佳结果,解决方案变异性和概率策略。结果表明,繁忙端口系统中的繁忙港口系统的核心训练的可靠性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号