首页> 美国卫生研究院文献>Evolutionary Bioinformatics Online >Graphics Processing Unit–Enhanced Genetic Algorithms for Solving the Temporal Dynamics of Gene Regulatory Networks
【2h】

Graphics Processing Unit–Enhanced Genetic Algorithms for Solving the Temporal Dynamics of Gene Regulatory Networks

机译:图形处理单元–增强的遗传算法用于解决基因调控网络的时间动态

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Understanding the regulation of gene expression is one of the key problems in current biology. A promising method for that purpose is the determination of the temporal dynamics between known initial and ending network states, by using simple acting rules. The huge amount of rule combinations and the nonlinear inherent nature of the problem make genetic algorithms an excellent candidate for finding optimal solutions. As this is a computationally intensive problem that needs long runtimes in conventional architectures for realistic network sizes, it is fundamental to accelerate this task. In this article, we study how to develop efficient parallel implementations of this method for the fine-grained parallel architecture of graphics processing units (GPUs) using the compute unified device architecture (CUDA) platform. An exhaustive and methodical study of various parallel genetic algorithm schemes—master-slave, island, cellular, and hybrid models, and various individual selection methods (roulette, elitist)—is carried out for this problem. Several procedures that optimize the use of the GPU’s resources are presented. We conclude that the implementation that produces better results (both from the performance and the genetic algorithm fitness perspectives) is simulating a few thousands of individuals grouped in a few islands using elitist selection. This model comprises 2 mighty factors for discovering the best solutions: finding good individuals in a short number of generations, and introducing genetic diversity via a relatively frequent and numerous migration. As a result, we have even found the optimal solution for the analyzed gene regulatory network (GRN). In addition, a comparative study of the performance obtained by the different parallel implementations on GPU versus a sequential application on CPU is carried out. In our tests, a multifold speedup was obtained for our optimized parallel implementation of the method on medium class GPU over an equivalent sequential single-core implementation running on a recent Intel i7 CPU. This work can provide useful guidance to researchers in biology, medicine, or bioinformatics in how to take advantage of the parallelization on massively parallel devices and GPUs to apply novel metaheuristic algorithms powered by nature for real-world applications (like the method to solve the temporal dynamics of GRNs).
机译:了解基因表达的调控是当前生物学的关键问题之一。用于该目的的一种有前途的方法是通过使用简单的作用规则确定已知的初始网络状态和结束网络状态之间的时间动态。大量的规则组合和问题的非线性固有性质使遗传算法成为寻找最佳解的极佳候选者。由于这是一个计算密集型问题,需要常规架构中的长时间运行才能实现实际的网络大小,因此加速此任务至关重要。在本文中,我们研究如何使用计算统一设备体系结构(CUDA)平台为图形处理单元(GPU)的细粒度并行体系结构开发此方法的有效并行实现。针对此问题,对各种并行遗传算法方案(主从,岛,蜂窝和混合模型以及各种个体选择方法(轮盘赌,精英))进行了详尽的系统研究。提出了一些优化GPU资源使用的过程。我们得出的结论是,产生更好结果的实现方式(从性能和遗传算法适用性的角度来看)是使用精英选择来模拟成千上万个人聚集在几个岛屿上的。该模型包含两个寻找最佳解决方案的强大因素:在短短的几代人中找到优秀的个体,并通过相对频繁和大量的迁徙引入遗传多样性。结果,我们甚至为分析的基因调控网络(GRN)找到了最佳解决方案。此外,还对GPU上不同并行实现与CPU上顺序应用的性能进行了比较研究。在我们的测试中,通过在最近的Intel i7 CPU上运行的等效顺序单核实现,我们在中型GPU上优化了该方法的并行实现,从而实现了倍数的加速。这项工作可以为生物学,医学或生物信息学领域的研究人员提供有用的指导,帮助他们了解如何利用大规模并行设备和GPU上的并行化功能,将自然界提供支持的新型元启发式算法应用于实际应用(例如解决时间问题的方法)。 GRN的动力学)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号