首页> 外文期刊>Expert systems with applications >Coronavirus disease (COVID-19) detection in Chest X-Ray images using majority voting based classifier ensemble
【24h】

Coronavirus disease (COVID-19) detection in Chest X-Ray images using majority voting based classifier ensemble

机译:冠状病毒疾病(Covid-19)使用大多数投票的分类器集合胸部X射线图像检测

获取原文
获取原文并翻译 | 示例

摘要

Novel coronavirus disease (nCOVID-19) is the most challenging problem for the world. The disease is caused by severe acute respiratory syndrome coronavirus-2 (SARS-COV-2), leading to high morbidity and mortality worldwide. The study reveals that infected patients exhibit distinct radiographic visual characteristics along with fever, dry cough, fatigue, dyspnea, etc. Chest X-Ray (CXR) is one of the important, non-invasive clinical adjuncts that play an essential role in the detection of such visual responses associated with SARS-COV-2 infection. However, the limited availability of expert radiologists to interpret the CXR images and subtle appearance of disease radiographic responses remains the biggest bottlenecks in manual diagnosis. In this study, we present an automatic COVID screening (ACoS) system that uses radiomic texture descriptors extracted from CXR images to identify the normal, suspected, and nCOVID-19 infected patients. The proposed system uses two-phase classification approach (normal vs. abnormal and nCOVID-19 vs. pneumonia) using majority vote based classifier ensemble of five benchmark supervised classification algorithms. The training-testing and validation of the ACoS system are performed using 2088 (696 normal, 696 pneumonia and 696 nCOVID-19) and 258 (86 images of each category) CXR images, respectively. The obtained validation results for phase-I (accuracy (ACC) = 98.062%, area under curve (AUC) = 0.956) and phase-II (ACC = 91.329% and AUC = 0.831) show the promising performance of the proposed system. Further, the Friedman post-hoc multiple comparisons and z-test statistics reveals that the results of ACoS system are statistically significant. Finally, the obtained performance is compared with the existing state-of-the-art methods.
机译:新型冠状病毒病(NCovid-19)是世界上最具挑战性的问题。该疾病是由严重急性呼吸综合征冠状病毒-2(SARS-COV-2)引起的,导致全世界的发病率高和死亡率高。该研究表明,感染的患者表现出不同的放射线摄影特征以及发热,干咳,疲劳,呼吸困难等。胸X射线(CXR)是在检测中发挥重要作用的重要性,无侵入性临床辅助之一与SARS-COV-2感染相关的这种视觉反应。然而,专家放射科医生的有限可用性来解释CXR图像和疾病放射线响应的细微外观仍然是手动诊断中最大的瓶颈。在这项研究中,我们介绍了一种自动Covid筛选(ACOS)系统,它使用从CXR图像提取的射系纹理描述符鉴定正常,可疑和NCOVID-19感染患者。建议的系统使用基于五大基准监督分类算法的大多数投票的分类器组合使用两阶段分类方法(正常与异常和Ncovid-19对阵肺炎)。 ACOS系统的培训测试和验证分别使用2088(696正常,696个肺炎和696个NCovid-19)和258(每个类别)CXR图像的258(86个图像)进行。所获得的相1的验证结果(精度(ACC)= 98.062%,曲线下的面积(AUC)= 0.956)和相II(ACC = 91.329%和AUC = 0.831)显示了所提出的系统的有希望的性能。此外,Hoc的弗里德曼多重比较和Z-试验统计显示,ACOS系统的结果具有统计学意义。最后,将获得的性能与现有的最先进方法进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号