首页> 外文期刊>Pattern Analysis and Applications >Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks
【24h】

Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks

机译:使用X射线图像和深卷积神经网络自动检测冠状病毒疾病(Covid-19)

获取原文
获取原文并翻译 | 示例

摘要

The 2019 novel coronavirus disease (COVID-19), with a starting point in China, has spread rapidly among people living in other countries and is approaching approximately 101,917,147 cases worldwide according to the statistics of World Health Organization. There are a limited number of COVID-19 test kits available in hospitals due to the increasing cases daily. Therefore, it is necessary to implement an automatic detection system as a quick alternative diagnosis option to prevent COVID-19 spreading among people. In this study, five pre-trained convolutional neural network-based models (ResNet50, ResNet101, ResNet152, InceptionV3 and Inception-ResNetV2) have been proposed for the detection of coronavirus pneumonia-infected patient using chest X-ray radiographs. We have implemented three different binary classifications with four classes (COVID-19, normal (healthy), viral pneumonia and bacterial pneumonia) by using five-fold cross-validation. Considering the performance results obtained, it has been seen that the pre-trained ResNet50 model provides the highest classification performance (96.1% accuracy for Dataset-1, 99.5% accuracy for Dataset-2 and 99.7% accuracy for Dataset-3) among other four used models.
机译:2019年新型冠状病毒病(Covid-19),在中国的起点,迅速在生活在其他国家的人群中迅速传播,并根据世界卫生组织的统计数据达到全球约101,917,147个案件。由于日常增加案例,医院提供有限数量的Covid-19测试套件。因此,有必要实施自动检测系统作为快速替代诊断选择,以防止Covid-19在人们之间传播。在本研究中,已经提出了五种预训练的卷积神经网络的模型(Reset50,Reset101,Reset152,Inceptionv3和Inception-Resetv2),用于使用胸部X射线射线照片检测冠状病毒肺炎感染患者。通过使用五倍的交叉验证,我们通过使用五倍的交叉验证实施了具有四种类(Covid-19,正常(健康),病毒肺炎和细菌肺炎的不同二元分类。考虑到所获得的性能结果,已经看到预先接受的Reset50模型提供了最高的分类性能(数据集-1的96.1%,数据集-2的99.5%的准确性为99.7%,而DataSet-3的99.7%的准确度)二手车型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号