首页> 外文期刊>Expert Systems with Application >Performance improvement strategies on Cuckoo Search algorithms for solving the university course timetabling problem
【24h】

Performance improvement strategies on Cuckoo Search algorithms for solving the university course timetabling problem

机译:杜鹃搜索算法绩效改进策略解决大学课程时间表

获取原文
获取原文并翻译 | 示例

摘要

The university course timetabling problem (UCTP) arises every academic year and must be solved by academic staff with/without a course timetabling tool. A Hybrid Self-adaptive Cuckoo Search-based Timetabling (HSCST) tool has been developed for minimising the total university operating costs. The HSCST tool was applied to solve eleven problem instances obtained from the Faculty of Engineering, Naresuan University. The performance improvements of the Cuckoo Search (CS) algorithm embedded within the proposed tool were demonstrated using three strategies: parameter setting approaches (static and adaptive), movement strategies (Levy flights and Gaussian random walks), and local search hybridisation techniques. Sequential computational experiments were designed and conducted to investigate the efficiency of the three proposed strategies. The statistical analysis on the computational results suggested that the proposed algorithms significantly outperformed the conventional CS, Particle Swarm Optimisation (PSO), and hybrid PSO for all problem instances. (c) 2020 Elsevier Ltd. All rights reserved.
机译:大学课程的时间表(UCTP)每学年都出现,并且必须通过学术人员解决/没有课程时间表工具来解决。已经开发了一种混合自适应Cuckoo搜索的时间表(HSCST)工具,以最大限度地减少大学总运营成本。 HSCST工具被应用于解决从纳雷斯轩大学工程学院获得的11个问题实例。使用三种策略来证明嵌入在所提出的工具中的Cuckoo搜索(CS)算法的性能改进:参数设置方法(静态和自适应),运动策略(Levy航班和高斯随机播放)以及本地搜索杂交技术。设计并进行了顺序计算实验,以调查三种拟议策略的效率。关于计算结果的统计分析表明,所提出的算法显着优于所有问题实例的传统CS,粒子群优化(PSO)和混合PSO。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号