首页> 外文期刊>Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on >Genetic Algorithms With Guided and Local Search Strategies for University Course Timetabling
【24h】

Genetic Algorithms With Guided and Local Search Strategies for University Course Timetabling

机译:带有导引和局部搜索策略的遗传算法用于大学课程授时

获取原文
获取原文并翻译 | 示例

摘要

The university course timetabling problem (UCTP) is a combinatorial optimization problem, in which a set of events has to be scheduled into time slots and located into suitable rooms. The design of course timetables for academic institutions is a very difficult task because it is an NP-hard problem. This paper investigates genetic algorithms (GAs) with a guided search strategy and local search (LS) techniques for the UCTP. The guided search strategy is used to create offspring into the population based on a data structure that stores information extracted from good individuals of previous generations. The LS techniques use their exploitive search ability to improve the search efficiency of the proposed GAs and the quality of individuals. The proposed GAs are tested on two sets of benchmark problems in comparison with a set of state-of-the-art methods from the literature. The experimental results show that the proposed GAs are able to produce promising results for the UCTP.
机译:大学课程时间表问题(UCTP)是组合优化问题,其中必须将一组事件安排在时隙中并放置在合适的房间中。为学术机构设计课程表是一项非常艰巨的任务,因为这是一个NP难题。本文研究了针对UCTP的遗传算法(GA),指导搜索策略和局部搜索(LS)技术。引导搜索策略用于基于数据结构创建后代,该数据结构存储从前代好人中提取的信息。最小二乘技术利用其可利用的搜索能力来提高所建议的遗传算法的搜索效率和个人素质。与文献中的一组最新方法相比,拟议的遗传算法在两组基准问题上进行了测试。实验结果表明,提出的遗传算法能够为UCTP产生有希望的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号