首页> 外文期刊>Expert systems with applications >Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network
【24h】

Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network

机译:基于杂交的人工神经网络的堆叠模型预测波动性

获取原文
获取原文并翻译 | 示例

摘要

An appropriate calibration and forecasting of volatility and market risk are some of the main challenges faced by companies that have to manage the uncertainty inherent to their investments or funding operations such as banks, pension funds or insurance companies. This has become even more evident after the 2007-2008 Financial Crisis, when the forecasting models assessing the market risk and volatility failed. Since then, a significant number of theoretical developments and methodologies have appeared to improve the accuracy of the volatility forecasts and market risk assessments. Following this line of thinking, this paper introduces a model based on using a set of Machine Learning techniques, such as Gradient Descent Boosting, Random Forest, Support Vector Machine and Artificial Neural Network, where those algorithms are stacked to predict S&P500 volatility. The results suggest that our construction outperforms other habitual models on the ability to forecast the level of volatility, leading to a more accurate assessment of the market risk. (C) 2019 Elsevier Ltd. All rights reserved.
机译:对波动性和市场风险的适当校准和预测是公司面临的一些主要挑战,这些挑战必须管理其投资或资助行动所固有的不确定性,例如银行,养老基金或保险公司。在评估市场风险和波动性失败的预测模型失败后,这在2007 - 2008年金融危机之后变得更加明显。从那时起,似乎似乎大量的理论发展和方法提高了波动性预测和市场风险评估的准确性。在此思维行之后,本文介绍了一种基于一组机器学习技术的模型,例如梯度下降升压,随机森林,支持向量机和人工神经网络,其中堆叠这些算法以预测S&P500波动率。结果表明,我们的建设始于其他习惯模型,以预测波动水平的能力,导致对市场风险的更准确评估。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号