首页> 外文期刊>Expert systems with applications >Stochastic reserving with a stacked model based on a hybridized Artificial Neural Network
【24h】

Stochastic reserving with a stacked model based on a hybridized Artificial Neural Network

机译:基于杂交的人工神经网络的堆叠模型随机保留

获取原文
获取原文并翻译 | 示例

摘要

Currently, legal requirements demand that insurance companies increase their emphasis on monitoring the risks linked to the underwriting and asset management activities. Regarding underwriting risks, the main uncertainties that insurers must manage are related to the premium sufficiency to cover future claims and the adequacy of the current reserves to pay outstanding claims. Both risks are calibrated using stochastic models due to their nature. This paper introduces a reserving model based on a set of machine learning techniques such as Gradient Boosting, Random Forest and Artificial Neural Networks. These algorithms and other widely used reserving models are stacked to predict the shape of the runoff. To compute the deviation around a former prediction, a log-normal approach is combined with the suggested model. The empirical results demonstrate that the proposed methodology can be used to improve the performance of the traditional reserving techniques based on Bayesian statistics and a Chain Ladder, leading to a more accurate assessment of the reserving risk. (C) 2020 Elsevier Ltd. All rights reserved.
机译:目前,法律要求要求保险公司增加重点,监测与承销和资产管理活动相关的风险。关于承保风险,保险公司必须管理的主要不确定性与覆盖未来索赔的溢价和现有储备的充分性有关,以偿还未缴索赔。由于他们的性质,使用随机模型进行校准两种风险。本文介绍了基于一组机器学习技术的保留模型,例如梯度升压,随机林和人工神经网络。这些算法和其他广泛使用的预留模型堆叠以预测径流的形状。为了计算前一预测周围的偏差,将对数正常方法与建议的模型相结合。经验结果表明,所提出的方法可用于提高基于贝叶斯统计和链阶梯的传统保留技术的性能,从而更准确地评估预留风险。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号