首页> 外文期刊>Expert Systems with Application >DPDnet: A robust people detector using deep learning with an overhead depth camera
【24h】

DPDnet: A robust people detector using deep learning with an overhead depth camera

机译:DPDnet:使用深度学习和高架深度摄像头的功能强大的人员检测器

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a deep learning-based method to detect multiple people from a single overhead depth image with high precision. Our neural network, called DPDnet, is composed by two fully-convolutional encoder-decoder blocks built with residual layers. The main block takes a depth image as input and generates a pixel-wise confidence map, where each detected person in the image is represented by a Gaussian-like distribution, The refinement block combines the depth image and the output from the main block, to refine the confidence map. Both blocks are simultaneously trained end-to-end using depth images and ground truth head position labels. The paper provides a rigorous experimental comparison with some of the best methods of the state-of-the-art, being exhaustively evaluated in different publicly available datasets. DPDnet proves to outperform all the evaluated methods with statistically significant differences, and with accuracies that exceed 99%. The system was trained on one of the datasets (generated by the authors and available to the scientific community) and evaluated in the others without retraining, proving also to achieve high accuracy with varying datasets and experimental conditions. Additionally, we made a comparison of our proposal with other CNN-based alternatives that have been very recently proposed in the literature, obtaining again very high performance. Finally, the computational complexity of our proposal is shown to be independent of the number of users in the scene and runs in real time using conventional GPUs. (C) 2019 Elsevier Ltd. All rights reserved.
机译:本文提出了一种基于深度学习的方法,可以从单个开销深度图像中高精度检测多个人。我们的神经网络称为DPDnet,由两个带有残差层的全卷积编码器/解码器块组成。主块将深度图像作为输入,并生成一个像素级置信度图,其中图像中的每个检测到的人都用类似高斯的分布表示。精化块将深度图像和主块的输出组合在一起,以优化置信度图。使用深度图像和地面真相头部位置标签对两个模块同时进行端到端训练。本文与最新技术中的一些最佳方法进行了严格的实验比较,并在不同的公开数据集中进行了详尽的评估。 DPDnet证明在统计上有显着差异,并且准确性超过99%,优于所有评估方法。该系统在其中一个数据集(由作者生成并可供科学界使用)上进行了培训,并在其他数据集上进行了评估,而无需重新培训,这也证明了在不同的数据集和实验条件下都可以实现高精度。此外,我们将该提案与文献中最近提出的其他基于CNN的备选方案进行了比较,从而再次获得了很高的性能。最后,我们的建议的计算复杂度被证明与场景中的用户数量无关,并且可以使用常规GPU实时运行。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号