首页> 外文期刊>Pattern recognition letters >Counting people by RGB or depth overhead cameras
【24h】

Counting people by RGB or depth overhead cameras

机译:通过RGB或深度高架摄像机对人进行计数

获取原文
获取原文并翻译 | 示例

摘要

In this paper we present a vision based method for counting the number of persons which cross a virtual line. The method analyzes the video stream acquired by a camera mounted in a zenithal position with respect to the counting line, allowing to determine the number of persons that cross the virtual line and providing the crossing direction for each person. The proposed approach has been specifically designed to achieve high accuracy and computational efficiency, so as to allow its adoption in real scenarios. An extensive evaluation of the method has been carried out taking into account the main factors that may impact on the counting performance and, in particular, the acquisition technology (traditional RGB camera and depth sensor), the installation scenario (indoor and outdoor), the density of the people flow (isolated people and groups of persons), the acquisition frame rate, and the image resolution. We have also analyzed the combination of the outputs obtained from the RGB and depth sensors as a way to improve the counting performance. The experimental results confirm the effectiveness of the proposed method, especially when combining RGB and depth information, and the tests over three different CPU architectures demonstrate the possibility of deploying the method both on high-end servers for processing in parallel a large number of video streams and on low power CPUs as those embedded on commercial smart cameras. (C) 2016 Elsevier B.V. All rights reserved.
机译:在本文中,我们提出了一种基于视觉的方法来计算越过虚拟线的人数。该方法分析通过安装在相对于计数线处于最高位置的摄像机获取的视频流,从而可以确定穿过虚拟线的人数,并为每个人提供交叉方向。所提出的方法经过专门设计,可实现较高的准确性和计算效率,从而使其可以在实际场景中采用。考虑到可能影响计数性能的主要因素,对该方法进行了广泛的评估,尤其是采集技术(传统RGB摄像头和深度传感器),安装场景(室内和室外),人流(孤立的人和一群人)的密度,采集帧率和图像分辨率。我们还分析了从RGB和深度传感器获得的输出的组合,以提高计数性能。实验结果证实了该方法的有效性,特别是在结合RGB和深度信息时,并且在三种不同的CPU架构上进行的测试表明,可以将这两种方法都部署在高端服务器上以并行处理大量视频流以及嵌入在商用智能相机中的低功耗CPU。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号