首页> 外文期刊>Expert Systems with Application >Neural trees with peer-to-peer and server-to-client knowledge transferring models for high-dimensional data classification
【24h】

Neural trees with peer-to-peer and server-to-client knowledge transferring models for high-dimensional data classification

机译:具有对等和服务器对客户端知识转移模型的神经树,用于高维数据分类

获取原文
获取原文并翻译 | 示例

摘要

Classification of the high-dimensional data by a new expert system is followed in the current paper. The proposed system defines some non-disjoint clusters of highly relevant features with the least inner redundancy. For each cluster, a neural tree is implemented exploiting an Extreme Learning Machine (ELM) together an inference engine in any node. The derived classification rules from ELM are stored in the rule base of the inference engine to recognize the classes. A majority voting is used to unify the results of the different neural trees. This structure is refereed as the Forest of Extreme Learning Machines with Rule base Transferring (FELM-RT). The contribution of FELM-RT is to decrease the duplicated computations by using two novel interaction models between the neural trees. In the first interaction model, namely Peer-to-Peer (P2P) model, each node can share its rule-base with the other nodes of the various neural trees. In the second that is referred as Server-to-Client (S2C) model, a neural tree that works on a cluster with the best relevancy and redundancy, shares the rules with the other neural trees. In both of the models, a fuzzy aggregation technique is used to adjust the certainty of the rules. The processing time of FELM-RT decreases essentially and it improves the classification accuracy. The high results of F-measure and G mean, show that FELM-RT classifies the high-dimensional datasets without over-fitting. The comparison between FELM-RT and some state-of-the-art classifiers reveals that FELM-RT overcomes them specially on the datasets with more than 3 million features. (C) 2019 Elsevier Ltd. All rights reserved.
机译:本文采用新的专家系统对高维数据进行分类。所提出的系统定义了一些具有高度相关特征的不相交的簇,其内部冗余最少。对于每个群集,在任何节点中都利用极限学习机(ELM)和推理引擎来实现神经树。从ELM派生的分类规则存储在推理引擎的规则库中以识别类。多数投票用于统一不同神经树的结果。这种结构被称为具有规则库转移的极限学习机森林(FELM-RT)。 FELM-RT的作用是通过在神经树之间使用两个新颖的交互模型来减少重复的计算。在第一个交互模型,即对等(P2P)模型中,每个节点可以与各种神经树的其他节点共享其规则库。在称为服务器到客户端(S2C)模型的第二个模型中,在具有最佳相关性和冗余性的集群上工作的神经树与其他神经树共享规则。在这两个模型中,都使用模糊聚合技术来调整规则的确定性。 FELM-RT的处理时间从本质上减少了,并且提高了分类精度。 F量度和G均值的高结果表明FELM-RT对高维数据集进行了分类而没有过度拟合。 FELM-RT与一些最新分类器之间的比较表明,FELM-RT在具有超过300万个特征的数据集上特别克服了它们。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号