首页> 外文期刊>Expert systems with applications >Predicting corporate financial distress based on integration of support vector machine and logistic regression
【24h】

Predicting corporate financial distress based on integration of support vector machine and logistic regression

机译:基于支持向量机和逻辑回归的集成预测公司财务困境

获取原文
获取原文并翻译 | 示例

摘要

The support vector machine (SVM) has been applied to the problem of bankruptcy prediction, and proved to be superior to competing methods such as the neural network, the linear multiple discriminant approaches and logistic regression. However, the conventional SVM employs the structural risk minimization principle, thus empirical risk of misclassification may be high, especially when a point to be classified is close to the hyperplane. This paper develops an integrated binary discriminant rule (IBDR) for corporate financial distress prediction. The described approach decreases the empirical risk of SVM outputs by interpreting and modifying the outputs of the SVM classifiers according to the result of logistic regression analysis. That is, depending on the vector's relative distance from the hyperplane, if result of logistic regression supports the output of the SVM classifier with a high probability, then IBDR will accept the output of the SVM classifier; otherwise, IBDR will modify the output of the SVM classifier. Our experimentation results demonstrate that IBDR outperforms the conventional SVM.
机译:支持向量机(SVM)已应用于破产预测问题,并证明优于竞争方法,例如神经网络,线性多重判别方法和逻辑回归。然而,传统的SVM采用结构风险最小化原理,因此错误分类的经验风险可能很高,尤其是当要分类的点靠近超平面时。本文为公司财务困境的预测开发了一个集成的二元判别规则(IBDR)。所描述的方法通过根据逻辑回归分析的结果来解释和修改SVM分类器的输出,从而降低了SVM输出的经验风险。也就是说,根据矢量与超平面的相对距离,如果逻辑回归的结果很有可能支持SVM分类器的输出,那么IBDR将接受SVM分类器的输出;否则,IBDR将修改SVM分类器的输出。我们的实验结果表明,IBDR优于传统的SVM。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号