首页> 外文期刊>Expert systems with applications >Mining learner profile utilizing association rule for web-based learning diagnosis
【24h】

Mining learner profile utilizing association rule for web-based learning diagnosis

机译:利用关联规则挖掘学习者档案以进行基于Web的学习诊断

获取原文
获取原文并翻译 | 示例

摘要

With the rapid growth of computer and Internet technologies, e-learning has become a major trend in the computer assisted teaching and learning fields. Most past researches for web-based learning focused on the issues of adaptive presentation, adaptive navigation support, curriculum sequencing, and intelligent analysis of student's solutions. These systems commonly neglect to consider whether learner can understand the learning courseware and generate misconception or not. To neglect learner's learning misconception will lead to obviously reducing learning performance, thus generating learning difficult. In order to discover common learning misconceptions of learners, this study employs the association rule to mine the learner profile for diagnosing learners' common learning misconceptions during learning processes. In this paper, the association rules that occurring misconception A implies occurring misconception B can be discovered utilizing the proposed association rule learning diagnosis approach. Meanwhile, this study applies the discovered association rules of the common learning misconceptions to tune courseware structure through modifying the difficulty parameters of courseware in the courseware database so that learning pathway is appropriately tuned. Besides, this paper also presents a remedy learning approach based on the discovered common learning misconceptions to promote learning performance. Experiment results indicate that applying the proposed learning diagnosis approach can correctly discover learners' common learning misconceptions according to learner profile and help learners to learn more effectively.
机译:随着计算机和Internet技术的迅速发展,电子学习已成为计算机辅助教学领域的主要趋势。过去,大多数基于网络学习的研究都集中在自适应演示,自适应导航支持,课程排序和学生解决方案的智能分析等问题上。这些系统通常会忽略考虑学习者是否可以理解学习课件并产生误解。忽视学习者的学习误解会导致学习成绩明显下降,从而产生学习困难。为了发现学习者的常见学习误解,本研究采用关联规则来挖掘学习者档案,以诊断学习者在学习过程中的常见学习误解。在本文中,可以使用提出的关联规则学习诊断方法来发现发生误解A意味着发生误解B的关联规则。同时,本研究利用发现的常见学习误解的关联规则,通过修改课件数据库中课件的难度参数,对课件结构进行了调整,从而适当地调整了学习路径。此外,本文还基于发现的常见学习误解提出了一种补救性学习方法,以促进学习成绩。实验结果表明,采用所提出的学习诊断方法可以根据学习者概况正确发现学习者的常见学习误解,帮助学习者更有效地学习。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号