首页> 外文期刊>Expert Systems with Application >A study on flowshop scheduling problem combining Taguchi experimental design and genetic algorithm
【24h】

A study on flowshop scheduling problem combining Taguchi experimental design and genetic algorithm

机译:Taguchi实验设计与遗传算法相结合的Flowshop调度问题研究

获取原文
获取原文并翻译 | 示例

摘要

As genetic algorithm parameters vary depending on different problem types when applying genetic algorithm to reach global optimum, appropriate design value selection has significant impact on the efficiency of genetic algorithm. However, most users adjust parameters manually based on the reference values of previous literature. Such trial-and-error method is time-consuming, ineffective, and often it could not locate the optimal combination. Therefore, in flowshop scheduling problems, this research anticipates to complete optimal parameter combination design in genetic algorithm using Taguchi experimental design. According to the research results, different ways of producing initial solution have significant influence on this research topic. Consequently, confirmation experiment is conducted using the optimal parameter combination obtained from the research results. It is found that the predicted value of signal-to-noise ratio (S/N ratio) and its actual value exists deviation of 0.238%, indicating repetitiveness and robustness of the obtained parameter combination. Hence, this research method can effectively reduce time spent on parameter design using genetic algorithm and increase efficiency of algorithm.
机译:当应用遗传算法达到全局最优时,遗传算法参数会根据不同的问题类型而变化,因此,适当的设计值选择对遗传算法的效率会产生重大影响。但是,大多数用户会根据先前文献的参考值手动调整参数。这种反复试验方法耗时,效率低下,并且通常无法找到最佳组合。因此,在流水车间调度问题中,本研究期望使用田口实验设计完成遗传算法中的最优参数组合设计。根据研究结果,产生初始解的不同方法对该研究主题有重大影响。因此,使用从研究结果获得的最佳参数组合进行了确认实验。发现信噪比的预测值(信噪比)与实际值存在0.238%的偏差,表明所获得的参数组合具有重复性和鲁棒性。因此,该研究方法可以有效地减少使用遗传算法进行参数设计的时间,提高算法的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号