首页> 外文期刊>Expert systems with applications >Probabilistic based recursive model for adaptive processing of data structures
【24h】

Probabilistic based recursive model for adaptive processing of data structures

机译:基于概率的递归模型用于数据结构的自适应处理

获取原文
获取原文并翻译 | 示例

摘要

One of the most popular frameworks for the adaptive processing of data structures to date, was proposed by Frasconi et al. [Frasconi, P., Gori, M., & Sperduti, A. (1998). A general framework for adaptive processing of data structures. IEEE Transactions on Neural Networks, 9(September), 768-785], who used a Backpropagation Through Structures (BPTS) algorithm [Goller, C, & Kuchler, A. (1996). Learning task-dependent distributed representations by back-propagation through structures. In Proceedings of IEEE international conference on neural networks (pp. 347-352); Tsoi, A. C. (1998). Adaptive processing of data structure: An expository overview and comments. Technical report in Faculty Informatics. Wollongong, Australia: University of Wollongong] to carry out supervised learning. This supervised model has been successfully applied to a number of learning tasks that involve complex symbolic structural patterns, such as image semantic structures, internet behavior, and chemical compounds. In this paper, we extend this model, using probabilistic estimates to acquire discriminative information from the learning patterns. Using this probabilistic estimation, smooth discriminant boundaries can be obtained through a process of clustering onto the observed input attributes. This approach enhances the ability of class discrimination techniques to recognize structural patterns. The proposed model is represented by a set of Gaussian Mixture Models (GMMs) at the hidden layer and a set of "weighted sum input to sigmoid function" models at the output layer. The proposed model's learning framework is divided into two phases: (a) locally unsupervised learning for estimating the parameters of the GMMs and (b) globally supervised learning for fine-tuning the GMMs' parameters and optimizing weights at the output layer. The unsupervised learning phase is formulated as a maximum likelihood problem that is solved by the expectation-maximization (EM) algorithm. The supervised learning phase is formulated as a cost minimization problem, using the least squares optimization or Levenberg-Marquardt method. The capabilities of the proposed model are evaluated in several simulation platforms. From the results of the simulations, not only does the proposed model outperform the original recursive model in terms of learning performance, but it is also significantly better at classifying and recognizing structural patterns.
机译:Frasconi等人提出了迄今为止最流行的用于数据结构自适应处理的框架之一。 [Frasconi,P.,Gori,M.&Sperduti,A.(1998)。用于数据结构自适应处理的通用框架。 IEEE Transactions on Neural Networks,9(9月),768-785],他使用了结构反向传播(BPTS)算法[Goller,C,&Kuchler,A.(1996)。通过结构的反向传播学习与任务相关的分布式表示形式。在IEEE国际神经网络会议论文集(第347-352页)中; Tsoi,A. C.(1998)。数据结构的自适应处理:说明性概述和注释。 《学院信息学》中的技术报告。澳大利亚卧龙岗市:Wollongong大学]进行监督学习。该监督模型已成功应用于涉及复杂符号结构模式的许多学习任务,例如图像语义结构,互联网行为和化合物。在本文中,我们扩展了该模型,使用概率估计从学习模式中获取判别信息。使用这种概率估计,可以通过聚类到观察到的输入属性的过程来获得平滑的判别边界。这种方法增强了类别区分技术识别结构模式的能力。所提出的模型由隐藏层的一组高斯混合模型(GMM)和输出层的一组“输入到S形函数的加权总和”模型表示。所提出的模型的学习框架分为两个阶段:(a)用于估计GMM参数的局部无监督学习;(b)用于微调GMM参数并在输出层优化权重的全局监督学习。无监督学习阶段被公式化为通过期望最大化(EM)算法解决的最大似然问题。使用最小二乘优化或Levenberg-Marquardt方法,将有监督的学习阶段表述为成本最小化问题。在多个仿真平台中评估了所提出模型的功能。从仿真结果来看,所提出的模型不仅在学习性能方面优于原始递归模型,而且在分类和识别结构模式方面也明显更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号