首页> 外文OA文献 >Adaptive Contextual Processing of Structured Data by Recursive Neural Networks: A Survey of Computational Properties
【2h】

Adaptive Contextual Processing of Structured Data by Recursive Neural Networks: A Survey of Computational Properties

机译:递归神经网络对结构化数据的自适应上下文处理:计算属性的概述

摘要

In this section, the capacity of statistical machine learning techniques for recursive structure processing is investigated. While the universal approximation capability of recurrent and recursive networks for sequence and tree processing is well established, recent extensions to so-called contextual models have not yet been investigated in depth. Contextual models have been proposed to process acyclic graph structures. They rely on a restriction of the recurrence of standard models with respect to children of vertices as occurs e.g. in cascade correlation. This restriction allows to introduce recurrence with respect to parents of vertices without getting cyclic definitions. These models have very successfully been applied to various problems in computational chemistry. In this section, the principled information which can be processed in such a way and the approximation capabilities of realizations of this principle by means of neural networks are investigated.
机译:在本节中,将研究统计机器学习技术用于递归结构处理的能力。虽然对于序列和树处理的递归网络和递归网络的通用逼近能力已得到很好的建立,但尚未深入研究所谓上下文模型的最新扩展。已经提出了上下文模型来处理非循环图结构。它们依赖于关于顶点子代的标准模型的重复出现的限制,例如发生在级联相关。此限制允许在不获取循环定义的情况下针对顶点的父级引入递归。这些模型已经非常成功地应用于计算化学中的各种问题。在本节中,研究了可以以这种方式处理的原理性信息以及通过神经网络实现该原理的近似能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号