首页> 外文期刊>Expert systems with applications >An Empirical Methodology For Developing Stockmarket Trading Systems Using Artificial Neural Networks
【24h】

An Empirical Methodology For Developing Stockmarket Trading Systems Using Artificial Neural Networks

机译:利用人工神经网络开发股票交易系统的经验方法

获取原文
获取原文并翻译 | 示例

摘要

A great deal of work has been published over the past decade on the application of neural networks to stockmarket trading. Individual researchers have developed their own techniques for designing and testing these neural networks, and this presents a difficulty when trying to learn lessons and compare results. This paper aims to present a methodology for designing robust mechanical trading systems using soft computing technologies, such as artificial neural networks. This paper describes the key steps involved in creating a neural network for use in stockmarket trading, and places particular emphasis on designing these steps to suit the real-world constraints the neural network will eventually operate in. Such a common methodology brings with it a transparency and clarity that should ensure that previously published results are both reliable and reusable.
机译:在过去的十年中,有关将神经网络应用于股票交易的大量工作已经发表。各个研究人员已经开发出自己的设计和测试这些神经网络的技术,这在尝试学习课程和比较结果时会遇到困难。本文旨在介绍一种使用软计算技术(例如人工神经网络)设计健壮的机械交易系统的方法。本文介绍了创建用于股票交易的神经网络所涉及的关键步骤,并特别强调了设计这些步骤以适应最终将要在其中运行的神经网络的现实条件。这种通用方法带来了透明度和清晰性应确保先前发布的结果既可靠又可重复使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号