首页> 外文期刊>Expert systems with applications >Online Fuzzy Modeling With Structure And Parameter Learning
【24h】

Online Fuzzy Modeling With Structure And Parameter Learning

机译:具有结构和参数学习的在线模糊建模

获取原文
获取原文并翻译 | 示例

摘要

This paper describes a novel nonlinear modeling approach with fuzzy rules and support vector machines. Structure identification is realized by an on-line clustering method and fuzzy support vector machines, the fuzzy rules are generated automatically. Time-varying learning rates are applied for updating the membership functions of the fuzzy rules. The modeling errors are proven to be robustly stable with bounded uncertainties by a Lyapunov method and an input-to-state stability technique. Comparisons with other related works are made through an application of gas furnace process. The results demonstrate that our approach has good accuracy, and this method is suitable for online fuzzy modeling.
机译:本文介绍了一种具有模糊规则和支持向量机的新型非线性建模方法。通过在线聚类和模糊支持向量机实现结构识别,自动生成模糊规则。随时间变化的学习率适用于更新模糊规则的隶属函数。通过Lyapunov方法和输入到状态稳定性技术,证明了建模误差具有有限的不确定性是鲁棒稳定的。通过应用煤气炉工艺与其他相关工作进行了比较。结果表明,该方法具有较高的精度,适用于在线模糊建模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号