首页> 外文期刊>Expert systems with applications >Traffic safety forecasting method by particle swarm optimization and support vector machine
【24h】

Traffic safety forecasting method by particle swarm optimization and support vector machine

机译:基于粒子群和支持向量机的交通安全预测方法

获取原文
获取原文并翻译 | 示例

摘要

School of Transportation, Southeast University, Nanjing 210096, China;School of Transportation, Southeast University, Nanjing 210096, China;%It is important to establish the decision of traffic safety planning by forecasting the development tendency of traffic accident according to the related data of traffic safety in former years. In order to solve the drawbacks of BP neural network, a novel approach which combines particle swarm optimization and support vector machine (PSO-SVM) is presented to traffic safety forecasting. Firstly, influencing factors of traffic safety and evaluation indexes are analyzed, then traffic safety forecasting model by PSO-SVM is established according to the influencing factors. Finally, the data about traffic safety in China from 1970 to 2006 are applied to research the forecasting ability of the proposed method. The experimental results show that traffic safety forecasting by PSO-SVM is better than that by BP neural network.
机译:东南大学交通学院,南京210096;东南大学交通学院,南京210096;%根据交通事故的相关数据预测交通事故的发展趋势,建立交通安全规划的决策至关重要。前几年的交通安全。为了解决BP神经网络的弊端,提出了一种结合粒子群算法和支持向量机(PSO-SVM)的交通安全预测方法。首先分析了影响交通安全的因素和评价指标,然后根据影响因素建立了基于PSO-SVM的交通安全预测模型。最后,利用1970年至2006年的中国交通安全数据,研究了该方法的预测能力。实验结果表明,PSO-SVM的交通安全预测效果优于BP神经网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号