机译:使用高级规则归纳技术构建可理解的客户流失预测模型
Department of Decision Sciences and Information Management, Katholieke Universiteit Leuven, Naamsestraat 6.9, B-3000 Leuven, Belgium;
Department of Decision Sciences and Information Management, Katholieke Universiteit Leuven, Naamsestraat 6.9, B-3000 Leuven, Belgium,Department of Business Administration and Public Management, Hogeschool Cent, Universiteit Gent, Voskenslaan 270, B-9000 Client, Belgium;
School of Management, University of Southampton, Highfield Southampton, SO17 IBJ, United Kingdom;
Department of Decision Sciences and Information Management, Katholieke Universiteit Leuven, Naamsestraat 6.9, B-3000 Leuven, Belgium,School of Management, University of Southampton, Highfield Southampton, SO17 IBJ, United Kingdom;
churn prediction; data mining; classification; comprehensible rule induction; ant colony optimization; alba;
机译:客户流失预测数据挖掘建模技术综述
机译:基于客户行为分析的有监督机器学习技术对客户流失预测的比较
机译:使用粗糙集理论和集成分类技术来计算有效特征,以改善电信行业的客户流失预测
机译:建立可理解的客户流失预测模型:多核支持向量机方法
机译:使用决策树,逻辑回归和随机林模型预测信用联盟客户流失行为
机译:客户流失预测的负相关学习:一个比较研究
机译:防止客户逃跑!探索客户流失预测的广义附加模型