首页> 外文期刊>Expert systems with applications >Fuzzy robust v-support vector machine with penalizing hybrid noises on symmetric triangular fuzzy number space
【24h】

Fuzzy robust v-support vector machine with penalizing hybrid noises on symmetric triangular fuzzy number space

机译:对称三角模糊数空间上带有混合噪声惩罚的模糊鲁棒v-支持向量机

获取原文
获取原文并翻译 | 示例

摘要

In view of the shortage of ε-insensitive loss function for hybrid noises such as singularity points, biggish magnitude noises and Gaussian noises, this paper presents a new version of fuzzy support vector machine (SVM) which can penalize those hybrid noises to forecast fuzzy nonlinear system. Since there exist some problems of hybrid noises and uncertain data in many actual forecasting problem, the input variables are described as fuzzy numbers by fuzzy comprehensive evaluation. Then by the integration of the triangular fuzzy theory, v-SVM and loss function theory, the fuzzy robust v-SVM with robust loss function (FRv-SVM) which can penalize those hybrid noises is proposed. To seek the optimal parameters of FRv-SVM, particle swarm optimization is also proposed to optimize the unknown parameters of FRv-SVM. The results of the application in fuzzy sale system forecasts confirm the feasibility and the validity of the FRv-SVM model. Compared with the traditional model and other SVM methods, FRv-SVM method requires fewer samples and has better generalization capability for Gaussian noise.
机译:鉴于奇异点,幅值较大的噪声和高斯噪声等混合噪声的ε不敏感损失函数不足,本文提出了一种新版本的模糊支持向量机(SVM),可以对这些混合噪声进行惩罚以预测模糊非线性。系统。由于在许多实际的预测问题中都存在混合噪声和不确定数据的问题,因此通过模糊综合评价将输入变量描述为模糊数。然后,通过将三角模糊理论,v-SVM和损失函数理论相结合,提出了具有鲁棒损失函数的模糊鲁棒v-SVM(FRv-SVM),可以惩罚那些混合噪声。为了寻找FRv-SVM的最优参数,还提出了粒子群算法来优化FRv-SVM的未知参数。模糊销售系统预测中的应用结果证实了FRv-SVM模型的可行性和有效性。与传统模型和其他支持向量机方法相比,FRv-SVM方法所需样本更少,对高斯噪声的泛化能力更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号