首页> 外文OA文献 >Fuzzy support vector regression machine with penalizing Gaussian noises on triangular fuzzy number space
【2h】

Fuzzy support vector regression machine with penalizing Gaussian noises on triangular fuzzy number space

机译:三角模糊数空间上惩罚高斯噪声的模糊支持向量回归机

摘要

In view of the shortage of epsilon-insensitive loss function for Gaussian noise, this paper presents a new version of fuzzy support vector machine (SVM) which can penalize Gaussian noise to forecast fuzzy nonlinear system. Since there exist some problems of finite samples and uncertain data in many forecasting problem, the input variables are described as crisp numbers by fuzzy comprehensive evaluation. To represent the fuzzy degree of these input variables, the symmetric triangular fuzzy technique is adopted. Then by the integration of the fuzzy theory, v-SVM and Gaussian loss function theory, the fuzzy v-SVM with Gaussian loss function (Fg-SVM) which can penalize Gaussian noise is proposed. To seek the optimal parameters of Fg-SVM, genetic algorithm is also proposed to optimize the unknown parameters of Fg-SVM. The results of the application in sale system forecasts confirm the feasibility and the validity of the Fg-SVM model. Compared with the traditional model, Fg-SVM method requires fewer samples and has better generalization capability for Gaussian noise.
机译:针对高斯噪声对ε不敏感的损失函数的不足,提出了一种新的模糊支持向量机(SVM),可以惩罚高斯噪声来预测模糊非线性系统。由于在许多预测问题中都存在有限样本和不确定数据的问题,因此通过模糊综合评价将输入变量描述为清晰数字。为了表示这些输入变量的模糊程度,采用了对称三角模糊技术。然后结合模糊理论,v-SVM和高斯损失函数理论,提出了一种可以惩罚高斯噪声的具有高斯损失函数的模糊v-SVM(Fg-SVM)。为了寻求Fg-SVM的最优参数,还提出了遗传算法来优化Fg-SVM的未知参数。销售系统预测中的应用结果证实了Fg-SVM模型的可行性和有效性。与传统模型相比,Fg-SVM方法需要更少的样本,并且对高斯噪声具有更好的泛化能力。

著录项

  • 作者

    Wu Q; Law R;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号