首页> 外文期刊>Expert Systems with Application >A fully Bayesian model based on reversible jump MCMC and finite Beta mixtures for clustering
【24h】

A fully Bayesian model based on reversible jump MCMC and finite Beta mixtures for clustering

机译:基于可逆跳跃MCMC和有限Beta混合的完全贝叶斯模型进行聚类

获取原文
获取原文并翻译 | 示例

摘要

The use of mixture models in image and signal processing has proved to be of considerable interest in terms of both theoretical development and in their usefulness in several applications. Researchers have approached the mixture estimation and selection problem, to model complex datasets, with different techniques in the last few years. In theory, it is well-known that full Bayesian approaches, to handle this problem, are fully optimal. The Bayesian learning allows the incorporation of prior knowledge in a formal coherent way that avoids overfitting problems. In this paper, we propose a fully Bayesian approach for finite Beta mixtures learning using a reversible jump Markov chain Monte Carlo (RJMCMC) technique which simultaneously allows cluster assignments, parameters estimation, and the selection of the optimal number of clusters. The adverb "fully" is justified by the fact that all parameters of interest in our model including number of clusters and missing values are considered as random variables for which priors are specified and posteriors are approximated using RJMCMC. Our work is motivated by the fact that Beta mixtures are able to fit any unknown distributional shape and then can be considered as a useful class of flexible models to address several problems and applications involving measurements and features having well-known marked deviation from the Gaussian shape. The usefulness of the proposed approach is confirmed using synthetic mixture data, real data, and through an interesting application namely texture classification and retrieval.
机译:在理论发展及其在几种应用中的实用性方面,已证明在图像和信号处理中使用混合模型引起了极大的兴趣。在过去的几年中,研究人员采用了不同的方法来研究混合估计和选择问题,以对复杂的数据集进行建模。从理论上讲,众所周知,完全贝叶斯方法是完全最优的。贝叶斯学习允许以形式上连贯的方式合并先验知识,从而避免过度拟合的问题。在本文中,我们提出了一种使用可逆跳跃马尔可夫链蒙特卡洛(RJMCMC)技术进行有限Beta混合学习的完全贝叶斯方法,该方法同时允许进行聚类分配,参数估计以及最佳聚类数的选择。副词“完全”的事实是,我们模型中所有感兴趣的参数(包括簇数和缺失值)均被视为随机变量,并为其指定了先验并使用RJMCMC近似了后验。 Beta混合物能够拟合任何未知的分布形状,然后被认为是有用的一类灵活的模型,可以解决涉及测量和特征的一些问题和应用,这些测量和特征与高斯形状​​有明显的偏差,这是我们工作的动力。使用合成混合物数据,真实数据并通过有趣的应用(即纹理分类和检索)确认了该方法的有用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号