首页> 外文期刊>Signal processing >Simultaneous Bayesian clustering and feature selection using RJMCMC-based learning of finite generalized Dirichlet mixture models
【24h】

Simultaneous Bayesian clustering and feature selection using RJMCMC-based learning of finite generalized Dirichlet mixture models

机译:使用基于RJMCMC的有限广义Dirichlet混合模型学习同时进行贝叶斯聚类和特征选择

获取原文
获取原文并翻译 | 示例

摘要

Selecting relevant features in multidimensional data is important in several pattern analysis and image processing applications. The goal of this paper is to propose a Bayesian approach for identifying clusters of proportional data based on the selection of relevant features. More specifically, we consider the problem of selecting relevant features in unsupervised settings when generalized Dirichlet mixture models are considered to model and cluster proportional data. The learning of the proposed statistical model, to formulate the unsupervised feature selection problem, is carried out using a powerful reversible jump Markov chain Monte Carlo (RJMCMC) technique. Experiments involving the challenging problems of human action videos categorization, pedestrian detection and face recognition indicate that the proposed approach is efficient.
机译:在多种模式分析和图像处理应用程序中,选择多维数据中的相关特征非常重要。本文的目的是提出一种基于相关特征选择的贝叶斯方法来识别比例数据簇。更具体地说,当考虑广义Dirichlet混合模型来对比例数据进行建模和聚类时,我们会考虑在无人监督的环境中选择相关特征的问题。使用强大的可逆跳跃马尔可夫链蒙特卡洛(RJMCMC)技术对提出的统计模型进行学习,以制定无监督的特征选择问题。涉及人体动作视频分类,行人检测和面部识别等挑战性问题的实验表明,该方法是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号