首页> 外文期刊>Journal of statistical computation and simulation >Model selection in finite mixture of regression models: a Bayesian approach with innovative weighted g priors and reversible jump Markov chain Monte Carlo implementation
【24h】

Model selection in finite mixture of regression models: a Bayesian approach with innovative weighted g priors and reversible jump Markov chain Monte Carlo implementation

机译:回归模型的有限混合中的模型选择:具有创新加权g先验和可逆跳跃马尔可夫链蒙特卡洛实现的贝叶斯方法

获取原文
获取原文并翻译 | 示例

摘要

Finite mixture of regression (FMR) models are aimed at characterizing subpopulation heterogeneity stemming from different sets of covariates that impact different groups in a population. We address the contemporary problem of simultaneously conducting covariate selection and determining the number of mixture components from a Bayesian perspective that can incorporate prior information. We propose a Gibbs sampling algorithm with reversible jump Markov chain Monte Carlo implementation to accomplish concurrent covariate selection and mixture component determination in FMR models. Our Bayesian approach contains innovative features compared to previously developed reversible jump algorithms. In addition, we introduce component-adaptive weighted g priors for regression coefficients, and illustrate their improved performance in covariate selection. Numerical studies show that the Gibbs sampler with reversible jump implementation performs well, and that the proposed weighted priors can be superior to non-adaptive unweighted priors.
机译:有限混合回归(FMR)模型旨在表征源自影响人口中不同群体的不同协变量集的亚群异质性。我们解决了当代问题,即同时进行协变量选择并从可以合并先验信息的贝叶斯角度确定混合成分的数量。我们提出了一种具有可逆跳马尔可夫链蒙特卡洛实现的吉布斯采样算法,以在FMR模型中完成并发协变量选择和混合成分确定。与以前开发的可逆跳转算法相比,我们的贝叶斯方法包含创新功能。此外,我们为回归系数引入了分量自适应加权g先验,并说明了它们在协变量选择中的改进性能。数值研究表明,采用可逆跳跃实现的吉布斯采样器性能良好,并且所提出的加权先验可以优于非自适应未加权先验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号