首页> 外文期刊>Communications in Statistics >Reversible jump Markov chain Monte Carlo algorithms for Bayesian variable selection in logistic mixed models
【24h】

Reversible jump Markov chain Monte Carlo algorithms for Bayesian variable selection in logistic mixed models

机译:Logistic混合模型中用于贝叶斯变量选择的可逆跳跃马尔可夫链蒙特卡罗算法。

获取原文
获取原文并翻译 | 示例

摘要

In this article, to reduce computational load in performing Bayesian variable selection, we used a variant of reversible jump Markov chain Monte Carlo methods, and the Holmes and Held (HH) algorithm, to sample model index variables in logistic mixed models involving a large number of explanatory variables. Furthermore, we proposed a simple proposal distribution for model index variables, and used a simulation study and real example to compare the performance of the HH algorithm with our proposed and existing proposal distributions. The results show that the HH algorithm with our proposed proposal distribution is a computationally efficient and reliable selection method.
机译:在本文中,为了减少执行贝叶斯变量选择时的计算负担,我们使用了可逆跳转马尔可夫链蒙特卡罗方法和Holmes and Held(HH)算法的变体,在涉及大量逻辑对数混合模型中对模型索引变量进行采样解释变量。此外,我们为模型索引变量提出了一个简单的建议分布,并通过仿真研究和实际示例将HH算法的性能与我们建议的和现有的建议分布进行了比较。结果表明,具有建议分布的HH算法是一种计算有效且可靠的选择方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号