首页> 外文期刊>Expert Systems with Application >A modular design of Bayesian networks using expert knowledge: Context-aware home service robot
【24h】

A modular design of Bayesian networks using expert knowledge: Context-aware home service robot

机译:使用专家知识的贝叶斯网络的模块化设计:上下文感知家庭服务机器人

获取原文
获取原文并翻译 | 示例

摘要

Recently, demand for service robots increases, and, particularly, one for personal service robots, which requires robot intelligence, will be expected to increase more. Accordingly, studies on intelligent robots are spreading all over the world. In this situation, we attempt to realize context-awareness for home robot while previous robot research focused on image processing, control and low-level context recognition. This paper uses probabilistic modeling for service robots to provide users with high-level context-aware services required in home environment, and proposes a systematic modeling approach for modeling a number of Bayesian networks. The proposed approach supplements uncertain sensor input using Bayesian network modeling and enhances the efficiency in modeling and reasoning processes using modular design based on domain knowledge. We verify the proposed method is useful as measuring the performance of context-aware module and conducting subjective test.
机译:近来,对服务机器人的需求增加,尤其是对需要机器人智能的个人服务机器人的需求将有望增加。因此,关于智能机器人的研究遍布世界各地。在这种情况下,我们尝试实现家用机器人的上下文感知,而先前的机器人研究则集中在图像处理,控制和低级上下文识别上。本文使用服务机器人的概率建模为用户提供家庭环境中所需的高级上下文感知服务,并提出了一种用于建模多个贝叶斯网络的系统建模方法。所提出的方法使用贝叶斯网络建模来补充不确定的传感器输入,并使用基于领域知识的模块化设计来提高建模和推理过程的效率。我们验证了所提出的方法对于测量上下文感知模块的性能和进行主观测试是有用的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号