首页> 外文期刊>Neurocomputing >Hierarchical modular Bayesian networks for low-power context-aware smartphone
【24h】

Hierarchical modular Bayesian networks for low-power context-aware smartphone

机译:用于低功耗上下文感知智能手机的分层模块化贝叶斯网络

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, smartphone has a tremendous number of applications using sensors and devices for several applications such as healthcare and game. However, serious consideration to increase the duration of battery use of phone is required because of the limited battery capacity. In this paper, we propose a hybrid system to increase the longevity of phone with hierarchical modular Bayesian networks that recognize the user's contexts, and device management rules that infer the unnecessary devices in smartphone. Inferring the user's contexts with sensor data and considering the device status, the context inferred and user's tendency, we determine the superfluous devices that are consuming the battery as dispensable. The experiments with the real log data collected from 28 people for 6 months verify that the proposed system performs the accuracy of 85.68% and the reduction of battery consumption of about 6%.
机译:如今,智能手机拥有大量的传感器和设备应用,可用于医疗保健和游戏等多种应用。但是,由于电池容量有限,需要认真考虑增加手机的电池使用时间。在本文中,我们提出了一种混合系统,该系统可通过可识别用户上下文的分层模块化贝叶斯网络以及可推断智能手机中不必要设备的设备管理规则来提高电话的使用寿命。使用传感器数据推断用户的环境,并考虑设备状态,推断的环境和用户的趋势,我们确定消耗电池的多余设备是可有可无的。使用从28个人那里收集的6个月的真实日志数据进行的实验证明,该系统的准确度为85.68%,电池消耗减少了6%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号