首页> 外文期刊>Expert systems with applications >Random interest regions for object recognition based on texture descriptors and bag of features
【24h】

Random interest regions for object recognition based on texture descriptors and bag of features

机译:基于纹理描述符和特征包的对象识别的随机兴趣区域

获取原文
获取原文并翻译 | 示例

摘要

In this work we propose a novel method for object recognition based on a random selection of interest regions, texture features (local binary/ternary patterns and local phase quantization) for describing each region, a bag-of-features approach for describing each object, and classification using support vector machines (SVMs). In our approach, a set of features is extracted from each subwindow of the object image. These sets are quantified, and the resulting global descriptor vector is used as a characterization of the image (e.g., as a feature vector for learning an image classification rule based on a SVM classifier). The standard texture descriptor is not widely utilized in region description. One of the first texture descriptors explored in region description is the CS-LBP descriptor, where a local binary pattern (LBP) feature is used as the local feature in the SIFT method, the most well-known object recognition algorithm. Our approach based on texture descriptors is much simpler than the SIFT algorithm, yet it performs comparably well. Furthermore, we show that the fusion between our approach and SIFT obtains a very high AUC in the well-known PASCAL VOC2006 dataset.
机译:在这项工作中,我们提出了一种基于目标区域的随机选择,用于描​​述每个区域的纹理特征(局部二元/三元模式和局部相位量化),用于描述每个物体的特征包方法的新颖的物体识别方法,使用支持向量机(SVM)进行分类。在我们的方法中,从对象图像的每个子窗口提取一组特征。这些集合被量化,并且所得的全局描述符向量被用作图像的表征(例如,用作用于基于SVM分类器学习图像分类规则的特征向量)。标准纹理描述符没有在区域描述中广泛使用。 CS-LBP描述符是在区域描述中探索的首批纹理描述符之一,其中局部二进制模式(LBP)特征用作最著名的对象识别算法SIFT方法中的局部特征。我们基于纹理描述符的方法比SIFT算法简单得多,但性能却相当好。此外,我们表明,我们的方法与SIFT的融合在著名的PASCAL VOC2006数据集中获得了很高的AUC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号