首页> 外文期刊>Expert Systems with Application >Comparing strategies for modeling students learning styles through reinforcement learning in adaptive and intelligent educational systems:An experimental analysis
【24h】

Comparing strategies for modeling students learning styles through reinforcement learning in adaptive and intelligent educational systems:An experimental analysis

机译:在自适应和智能教育系统中通过强化学习对学生学习风格进行建模的策略比较:实验分析

获取原文
获取原文并翻译 | 示例

摘要

A huge number of studies attest that learning is facilitated if teaching strategies are in accordance with students learning styles, making the learning process more effective and improving students performances. In this context, this paper presents an automatic, dynamic and probabilistic approach for modeling students learning styles based on reinforcement learning. Three different strategies for updating the student model are proposed and tested through experiments. The results obtained are analyzed, indicating the most effective strategy. Experiments have shown that our approach is able to automatically detect and precisely adjust students' learning styles, based on the non-deterministic and non-stationary aspects of learning styles. Because of the probabilistic and dynamic aspects enclosed in automatic detection of learning styles, our approach gradually and constantly adjusts the student model, taking into account students' performances, obtaining a fine-tuned student model.
机译:大量的研究证明,如果教学策略符合学生的学习方式,将会促进学习,从而使学习过程更有效并改善学生的表现。在这种情况下,本文提出了一种基于强化学习的自动,动态和概率建模学生学习风格的方法。提出了三种更新学生模型的策略,并通过实验对其进行了测试。分析获得的结果,表明最有效的策略。实验表明,基于学习风格的不确定性和非平稳性,我们的方法能够自动检测并精确调整学生的学习风格。由于自动检测学习风格中包含的概率和动态方面,我们的方法逐渐并不断地调整学生模型,同时考虑到学生的表现,从而获得经过微调的学生模型。

著录项

  • 来源
    《Expert Systems with Application》 |2013年第6期|2092-2101|共10页
  • 作者单位

    Faculty of Computer Science (FACOM), Federal University of Uberlandia (UFU), Campus Santa Monica, Bloco 1B, Sala 1B148, Av. JoSo Naves de Avila, 2.121, Bairro Santa Monica,CEP 38400-902, Uberlandia/MG, Brazil,Faculty of Electrical Engineering (FEELT), Federal University of UberlSndia (UFU), Campus Santa Monica, Bloco 1B, Sala 1B148, Av.Joao Naves de Avila, 2.121, Bairro Santa Monica,CEP 38400-902, Uberlandia/MG, Brazil;

    Faculty of Electrical Engineering (FEELT), Federal University of UberlSndia (UFU), Campus Santa Monica, Bloco 1B, Sala 1B148, Av.Joao Naves de Avila, 2.121, Bairro Santa Monica,CEP 38400-902, Uberlandia/MG, Brazil;

    Faculty of Computer Science (FACOM), Federal University of Uberlandia (UFU), Campus Santa Monica, Bloco 1B, Sala 1B148, Av. JoSo Naves de Avila, 2.121, Bairro Santa Monica,CEP 38400-902, Uberlandia/MG, Brazil;

    Faculty of Computer Science (FACOM), Federal University of Uberlandia (UFU), Campus Santa Monica, Bloco 1B, Sala 1B148, Av. JoSo Naves de Avila, 2.121, Bairro Santa Monica,CEP 38400-902, Uberlandia/MG, Brazil;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    student modeling; learning styles; adaptive and intelligent educational; systems; reinforcement learning; student evaluation; e-learning;

    机译:学生造型;学习方法;适应性和智能教育;系统;强化学习;学生评价;电子学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号