首页> 外文期刊>Expert Systems with Application >Study on SINA micro-blog personalized recommendation based on semantic network
【24h】

Study on SINA micro-blog personalized recommendation based on semantic network

机译:基于语义网的新浪微博个性化推荐研究

获取原文
获取原文并翻译 | 示例

摘要

In recent years, semantic network is applied to more and more research areas, such as Information Science areas. Differing from traditional users' recommendations, the tweets' recommendation in a micro-blog network has two crucial differences. One is high authority users or one's special friends usually play a very active role in tweet-oriented recommendation. Micro-blog user will put the users his/her very interested into "special attention" group, and the topics discussed more in "special attention" group are more likely to be the user interested topic. The other is that users hope to obtain more relevant tweets about what he/she is interested in. Thus, this paper uses the k-cores analysis method to extract topics that users pay attention to, and employs the method of factor analysis to analyze index, and to extract the tweet heat factor and user authority factor. Besides, this paper intends to use the method of RS and linear regression to determine the parameters for balancing the value of the tweet heat factor and user authority factor. Finally, this paper manages to establish a timely personalized recommendation model based on semantic network for SINA tweets. According to the experimental results, the proposed method in this paper can effectively solve problems existing in micro-blog tweets in a personalized and timely recommendation way. (C) 2015 Elsevier Ltd. All rights reserved.
机译:近年来,语义网络被应用于越来越多的研究领域,例如信息科学领域。与传统用户的推荐不同,微博网络中的推文推荐有两个关键差异。一个是高权限用户,或者一个特殊的朋友通常在面向推文的推荐中扮演非常积极的角色。微博用户会将他/她非常感兴趣的用户归入“特别关注”组,而在“特别关注”组中讨论得更多的主题则更有可能成为用户感兴趣的主题。另一个是用户希望获得关于他/她感兴趣的信息的相关推文。因此,本文使用k核分析方法来提取用户关注的主题,并使用因子分析方法来分析索引。 ,并提取推特热量因子和用户权限因子。此外,本文打算使用RS和线性回归的方法来确定平衡推文热因子和用户权限因子的参数。最后,本文尝试建立基于语义网络的SINA推文及时个性化推荐模型。根据实验结果,本文提出的方法能够以个性化,及时的推荐方式有效解决微博推文中存在的问题。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号