首页> 外文期刊>Expert Systems with Application >Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning
【24h】

Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning

机译:用于空间众包的高效任务分配:具有半强学习的组合分数优化方法

获取原文
获取原文并翻译 | 示例

摘要

Spatial crowdsourcing has emerged as a new paradigm for solving problems in the physical world with the help of human workers. A major challenge in spatial crowdsourcing is to assign reliable workers to nearby tasks. The goal of such task assignment process is to maximize the task completion in the face of uncertainty. This process is further complicated when tasks arrivals are dynamic and worker reliability is unknown. Recent research proposals have tried to address the challenge of dynamic task assignment. Yet the majority of the proposals do not consider the dynamism of tasks and workers. They also make the unrealistic assumptions of known deterministic or probabilistic workers' reliabilities. In this paper, we propose a novel approach for dynamic task assignment in spatial crowdsourcing. The proposed approach combines bi-objective optimization with combinatorial multi-armed bandits. We formulate an online optimization problem to maximize task reliability and minimize travel costs in spatial crowdsourcing. We propose the distance-reliability ratio (DRR) algorithm based on a combinatorial fractional programming approach. The DRR algorithm reduces travel costs by 80% while maximizing reliability when compared to existing algorithms. We extend the DRR algorithm for the scenario when worker reliabilities are unknown. We propose a novel algorithm (DRR-UCB) that uses an interval estimation heuristic to approximate worker reliabilities. Experimental results demonstrate that the DRR-UCB achieves high reliability in the face of uncertainty. The proposed approach is particularly suited for real-life dynamic spatial crowdsourcing scenarios. This approach is generalizable to the similar problems in other areas in expert systems. First, it encompasses online assignment problems when the objective function is a ratio of two linear functions. Second, it considers situations when intelligent and repeated assignment decisions are needed under uncertainty. (C) 2016 Elsevier Ltd. All rights reserved.
机译:空间众包已经成为在人类工作者的帮助下解决物理世界中问题的新范例。在空间众包中的主要挑战是指派可靠的工人从事附近的工作。这种任务分配过程的目标是在面对不确定性的情况下最大程度地完成任务。当任务到达是动态的并且工作人员的可靠性未知时,此过程将变得更加复杂。最近的研究建议试图解决动态任务分配的挑战。但是,大多数建议都没有考虑任务和工人的活力。他们还对已知的确定性或概率性工人的可靠性做出了不切实际的假设。在本文中,我们提出了一种用于空间众包中动态任务分配的新方法。所提出的方法结合了双目标优化和组合式多臂土匪。我们制定了在线优化问题,以最大程度地提高任务的可靠性,并最大程度地减少空间众包中的差旅成本。我们提出了一种基于组合分数规划方法的距离可靠性比(DRR)算法。与现有算法相比,DRR算法可将旅行成本降低80%,同时最大程度地提高可靠性。当工人可靠性未知时,我们将DRR算法扩展为该方案。我们提出了一种新颖的算法(DRR-UCB),该算法使用间隔估计启发式算法来近似工人的可靠性。实验结果表明,DRR-UCB在面对不确定性时具有很高的可靠性。所提出的方法特别适合于现实生活中的动态空间众包场景。这种方法可以推广到专家系统中其他领域的类似问题。首先,当目标函数是两个线性函数的比率时,它包含在线分配问题。其次,它考虑了在不确定情况下需要智能和重复分配决策的情况。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号