首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Destination-Aware Task Assignment in Spatial Crowdsourcing: A Worker Decomposition Approach
【24h】

Destination-Aware Task Assignment in Spatial Crowdsourcing: A Worker Decomposition Approach

机译:空间众包中的目的地感知任务分配:工人分解方法

获取原文
获取原文并翻译 | 示例

摘要

With the proliferation of GPS-enabled smart devices and increased availability of wireless network, spatial crowdsourcing (SC) has been recently proposed as a framework to automatically request workers (i.e., smart device carriers) to perform location-sensitive tasks (e.g., taking scenic photos, reporting events). In this paper, we study a destination-aware task assignment problem that concerns the optimal strategy of assigning each task to proper worker such that the total number of completed tasks can be maximized whilst all workers can reach their destinations before deadlines after performing assigned tasks. Finding the global optimal assignment turns out to be an intractable problem since it does not imply optimal assignment for individual worker. Observing that the task assignment dependency only exists amongst subsets of workers, we utilize tree-decomposition technique to separate workers into independent clusters and develop an efficient depth-first search algorithm with progressive bounds to prune non-promising assignments. In order to make our proposed framework applicable to more scenarios, we further optimize the original framework by proposing strategies to reduce the overall travel cost and allow each task to be assigned to multiple workers. Extensive empirical studies verify that the proposed technique and optimization strategies perform effectively and settle the problem nicely.
机译:通过支持GPS的智能设备的增殖和无线网络的可用性,最近已被提出作为自动请求工作人员(即智能设备载体)来执行位置敏感任务的框架(例如,拍摄景区的框架照片,报告活动)。在本文中,我们研究了一个目的地感知任务分配问题,涉及将每个任务分配给适当的工人的最佳策略,使得完成任务总数可以最大化,而所有工人在执行分配任务后,所有工人可以在截止日期前到达目的地。找到全局最优分配结果表明是一个难以解决的问题,因为它并不意味着个别工人的最佳分配。观察任务分配依赖项只存在于工人的子集中,我们利用树分解技术将工人分离为独立的集群,并使用渐进式界限进行高效的深度第一搜索算法来修剪非承诺的分配。为了使我们提出适用于更多场景的框架,我们通过提出策略来进一步优化原始框架,以降低整体旅行费用,并允许将每个任务分配给多个工人。广泛的经验研究验证了所提出的技术和优化策略有效地表现,并良好地解决了问题。

著录项

  • 来源
    《IEEE Transactions on Knowledge and Data Engineering》 |2020年第12期|2336-2350|共15页
  • 作者单位

    Soochow Univ Sch Comp Sci & Technol Inst Artificial Intelligence Suzhou 215168 Jiangsu Peoples R China|Zhejiang Lab Hangzhou 310025 Zhejiang Peoples R China;

    Univ Elect Sci & Technol China Chengdu 610054 Sichuan Peoples R China;

    Soochow Univ Sch Comp Sci & Technol Suzhou 215168 Jiangsu Peoples R China;

    Univ Elect Sci & Technol China Chengdu 610054 Sichuan Peoples R China;

    Renmin Univ China Beijing 100872 Peoples R China;

    Zhejiang Lab Hangzhou 310025 Zhejiang Peoples R China|Univ Queensland Brisbane Qld 4072 Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Spatial crowdsourcing; spatial task assignment; algorithm;

    机译:空间众包;空间任务分配;算法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号