首页> 外文期刊>Expert Systems with Application >Learning communication patterns for malware discovery in HTTPs data
【24h】

Learning communication patterns for malware discovery in HTTPs data

机译:学习HTTPs数据中恶意软件发现的通信模式

获取原文
获取原文并翻译 | 示例

摘要

Encrypted communication on the Internet using the HTTPs protocol represents a challenging task for network intrusion detection systems. While it significantly helps to preserve users' privacy, it also limits a detection system's ability to understand the traffic and effectively identify malicious activities. In this work, we propose a method for modeling and representation of encrypted communication from logs of web communication. The idea is based on introducing communication snapshots of individual users' activity that model contextual information of the encrypted requests. This helps to compensate the information hidden by the encryption. We then propose statistical descriptors of the communication snapshots that can be consumed by various machine learning algorithms for either supervised or unsupervised analysis of the data. In the experimental evaluation, we show that the presented approach can be used even on a large corpus of network traffic logs as the process of creation of the descriptors can be effectively implemented on a Hadoop cluster. (C) 2018 Elsevier Ltd. All rights reserved.
机译:使用HTTPs协议在Internet上进行加密通信对于网络入侵检测系统而言是一项艰巨的任务。虽然它在很大程度上有助于保护用户的隐私,但它也限制了检测系统了解流量并有效识别恶意活动的能力。在这项工作中,我们提出了一种用于从Web通信日志中建模和表示加密通信的方法。该思想基于引入单个用户活动的通信快照,该快照对加密请求的上下文信息进行建模。这有助于补偿加密隐藏的信息。然后,我们提出通信快照的统计描述符,这些消息可以被各种机器学习算法消耗,以进行有监督或无监督的数据分析。在实验评估中,我们表明,由于描述符的创建过程可以在Hadoop集群上有效实现,因此即使在大型网络流量日志中也可以使用该方法。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Expert Systems with Application》 |2018年第7期|129-142|共14页
  • 作者单位

    Czech Tech Univ, Fac Elect Engn, Prague, Czech Republic;

    Czech Tech Univ, Fac Elect Engn, Prague, Czech Republic;

    Charles Univ Prague, Dept Software Engn, SIRET Res Grp, Fac Math & Phys, Prague, Czech Republic;

    Charles Univ Prague, Dept Software Engn, SIRET Res Grp, Fac Math & Phys, Prague, Czech Republic;

    Charles Univ Prague, Dept Software Engn, SIRET Res Grp, Fac Math & Phys, Prague, Czech Republic;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hadoop; HTTPs data; Malware detection; GMM;

    机译:Hadoop;HTTPs数据;恶意软件检测;GMM;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号