首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >A metapattern-based automated discovery loop for integrated data mining-unsupervised learning of relational patterns
【24h】

A metapattern-based automated discovery loop for integrated data mining-unsupervised learning of relational patterns

机译:基于元模式的自动发现循环,用于集成数据挖掘-关系模式的无监督学习

获取原文
获取原文并翻译 | 示例

摘要

A metapattern (also known as a metaquery) is a new approach for integrated data mining systems. As opposed to a typical "toolbox"-like integration, where components must be picked and chosen by users without much help, metapatterns provide a common representation for inter-component communication as well as a human interface for hypothesis development and search control. One weakness of this approach, however, is that the task of generating fruitful metapatterns is still a heavy burden for human users. In this paper, we describe a metapattern generator and an integrated discovery loop that can automatically generate metapatterns. Experiments in both artificial and real-world databases have shown that this new system goes beyond the existing machine learning technologies, and can discover relational patterns without requiring humans to pre-label the data as positive or negative examples for some given target concepts. With this technology, future data mining systems could discover high-quality, human-comprehensible knowledge in a much more efficient and focused manner, and data mining could be managed easily by both expert and less-expert users.
机译:元模式(也称为元查询)是用于集成数据挖掘系统的新方法。与典型的类似于“工具箱”的集成(用户必须在没有太多帮助的情况下选择和选择组件)相反,元模式为组件间的通信提供了通用表示,并为假设开发和搜索控制提供了人机界面。但是,这种方法的一个缺点是,生成富有成效的元模式的任务仍然是人类使用者的沉重负担。在本文中,我们描述了元模式生成器和可以自动生成元模式的集成发现循环。在人工和现实数据库中的实验表明,该新系统超越了现有的机器学习技术,并且可以发现关系模式,而无需人工将数据预先标记为某些给定目标概念的肯定或否定示例。借助该技术,未来的数据挖掘系统可以以更加有效和集中的方式发现高质量的,易于理解的知识,并且可以由专家和不那么专业的用户轻松管理数据挖掘。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号