首页> 外文期刊>Environmetrics >Conditional versus unconditional mean-squared prediction errors for Gaussian processes with constant but unknown mean
【24h】

Conditional versus unconditional mean-squared prediction errors for Gaussian processes with constant but unknown mean

机译:高斯过程具有均值但未知的高斯过程的有条件和无条件均方预测误差

获取原文
获取原文并翻译 | 示例

摘要

For prediction in a Gaussian random field, we give an explicit formulation of the conditional mean-squared prediction error (cmspe). If the prediction method is ordinary kriging, we find that this error in most applications is likely to be very close to the ordinary kriging variance. This is additionally demonstrated based on a case study. Finally, we discuss the difference between these two errors compared to the error introduced by using estimated instead of true covariance parameters.
机译:为了在高斯随机场中进行预测,我们给出了条件均方预测误差(cmspe)的显式公式。如果预测方法是普通克里金法,我们发现在大多数应用程序中此误差很可能非常接近普通克里金法方差。案例研究进一步证明了这一点。最后,我们讨论了这两个误差之间的差异,与使用估计值而非真实协方差参数引入的误差相比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号