首页> 外文期刊>Engineering with Computers >A two-stage adaptive multi-fidelity surrogate model-assisted multi-objective genetic algorithm for computationally expensive problems
【24h】

A two-stage adaptive multi-fidelity surrogate model-assisted multi-objective genetic algorithm for computationally expensive problems

机译:一种两级自适应多保真代理模型辅助多目标遗传算法,用于计算昂贵的问题

获取原文
获取原文并翻译 | 示例

摘要

Surrogate model-assisted multi-objective genetic algorithms (MOGA) show great potential in solving engineering design problems since they can save computational cost by reducing the calls of expensive simulations. In this paper, a two-stage adaptive multi-fidelity surrogate (MFS) model-assisted MOGA (AMFS-MOGA) is developed to further relieve their computational burden. In the warm-up stage, a preliminary Pareto frontier is obtained relying only on the data from the low-fidelity (LF) model. In the second stage, an initial MFS model is constructed based on the data from both LF and high-fidelity (HF) models at the samples, which are selected from the preliminary Pareto set according to the crowding distance in the objective space. Then the fitness values of individuals are evaluated using the MFS model, which is adaptively updated according to two developed strategies, an individual-based updating strategy and a generation-based updating strategy. The former considers the prediction uncertainty from the MFS model, while the latter takes the discrete degree of the population into consideration. The effectiveness and merits of the proposed AMFS-MOGA approach are illustrated using three benchmark tests and the design optimization of a stiffened cylindrical shell. The comparisons between the proposed AMFS-MOGA approach and some existing approaches considering the quality of the obtained Pareto frontiers and computational efficiency are made. The results show that the proposed AMFS-MOGA method can obtain Pareto frontiers comparable to that obtained by the MOGA with HF model, while significantly reducing the number of evaluations of the expensive HF model.
机译:代理模型辅助的多目标遗传算法(MOGA)在解决工程设计问题方面表现出极大的潜力,因为它们可以通过减少昂贵模拟的呼叫来节省计算成本。在本文中,开发了一种两级自适应多保真代理(MFS)辅助MOGA(AMFS-MOGA)以进一步缓解其计算负担。在预热阶段,仅获得仅依赖于来自低保真(LF)模型的数据的初步静脉前沿。在第二阶段,基于来自样本处的LF和高保真(HF)模型的数据构建初始MFS模型,该样本中选择根据物镜空间中的拥挤距离从初步帕罗克索组中选择。然后,使用MFS模型评估各个的适应度值,该MFS模型根据两个开发的策略,是基于个人的更新策略和基于代的更新策略的自适应更新。前者认为从MFS模型中的预测不确定性,而后者考虑了后者的离散程度。所提出的AMFS-MOGA方法的有效性和优点是使用三个基准测试和加强圆柱壳的设计优化来说明。提出了AMFS-MOGA方法与考虑所获得的帕累托前沿的质量和计算效率的一些现有方法的比较。结果表明,所提出的AMFS-MOGA方法可以获得与HF模型的MOGA获得的帕吻码前沿,同时显着降低了昂贵的HF模型的评估的数量。

著录项

  • 来源
    《Engineering with Computers》 |2021年第1期|623-639|共17页
  • 作者单位

    School of Aerospace Engineering Huazhong University of Science and Technology Wuhan 430074 People's Republic of China;

    School of Aerospace Engineering Huazhong University of Science and Technology Wuhan 430074 People's Republic of China;

    School of Aerospace Engineering Huazhong University of Science and Technology Wuhan 430074 People's Republic of China;

    School of Aerospace Engineering Huazhong University of Science and Technology Wuhan 430074 People's Republic of China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multi-fidelity surrogate model; Model management; Prediction uncertainty; Simulation-based design; Optimization;

    机译:多保真代理模型;模型管理;预测不确定性;基于仿真的设计;优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号