首页> 外文期刊>Engineering with Computers >A self-propelled robotic system with a visco-elastic joint: dynamics and motion analysis
【24h】

A self-propelled robotic system with a visco-elastic joint: dynamics and motion analysis

机译:具有粘弹性接头的自推进机器人系统:动态和运动分析

获取原文
获取原文并翻译 | 示例

摘要

This paper studies the dynamics and motion generation of a self-propelled robotic system with a visco-elastic joint. The system is underactuated, legless and wheelless, and has potential applications in environmental inspection and operation in restricted spaces which are inaccessible to human beings, such as pipeline inspection, medical assistance and disaster rescue. Locomotion of the system relies on the stick-slip effects, which interacts with the frictional force of the surface in contact. The nonlinear robotic model utilizes combined tangential-wise and normal-wise vibrations for underactuated locomotion, which features a generic significance for the studies on self-propelled systems. To identify the characteristics of the visco-elastic joint and shed light on the energy efficacy, parameter dependences on stiffness and damping coefficients are thoroughly analysed. Our studies demonstrate that the dynamic behaviour of the self-propelled system is mainly periodic and desirable forward motion is achieved via identification of the variation laws of the control parameters and elaborate selection of the stiffness and damping coefficients. A motion generation strategy is developed, and an analytical two-stage motion profile is proposed based on the system response and dynamic constraint analysis, followed by a parameterization procedure to optimally generate the trajectory. The proposed method provides a novel approach in generating self-propelled locomotion, and designing and computing the visco-elastic parameters for energy efficacy. Simulation results are presented to demonstrate the effectiveness and feasibility of the proposed model and motion generation approach.
机译:本文研究了具有粘弹性接头的自推进机器人系统的动态和运动产生。该系统是欠抗动,无腿和行的,并且在受限制空间中的环境检查和操作中具有潜在的应用,这些空间无法进入人类,例如管道检查,医疗援助和灾难救援。系统的运动依赖于粘滑效果,其与接触的表面的摩擦力相互作用。非线性机器人模型利用用于废除运动的联合切向和正常振动,其为自推进系统的研究具有通用意义。为了识别粘弹性接头和脱光对能量效能的特性,彻底分析了对刚度和阻尼系数的参数依赖性。我们的研究表明,通过识别控制参数的变化规律并精确选择刚度和阻尼系数,实现了自推进系统的动态行为主要是周期性的,并且期望的正向运动。开发运动生成策略,并且基于系统响应和动态约束分析提出了分析两级运动轮廓,然后是参数化过程以最佳地生成轨迹。该方法提供了一种在产生自推进运动的新方法,以及设计和计算用于能量功效的粘弹性参数。提出了仿真结果以证明所提出的模型和运动产生方法的有效性和可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号