首页> 外文期刊>Engineering Structures >Predicting the flutter speed of a pedestrian suspension bridge through examination of laboratory experimental errors
【24h】

Predicting the flutter speed of a pedestrian suspension bridge through examination of laboratory experimental errors

机译:通过检查实验室实验误差来预测人行悬索桥的扑动速度

获取原文
获取原文并翻译 | 示例

摘要

The paper investigates experimental error propagation and its effects on critical flutter speeds of pedestrian suspension bridges using three different experimental data sets: pressure coefficients, aerodynamic static forces and flutter derivatives. The three data sets are obtained from section model measurements in three distinct laboratories. Data sets are used to study three different geometries of pedestrian suspension bridges. Critical flutter speed is estimated using finite-element nonlinear analysis, numerical 2-DOF generalized deck model and 3-DOF full-bridge model. Flutter probability, contaminated by various experimental error sources, is examined. Experimental data sets are synthetically expanded to obtain two population sets of deck wind loads with 30 and 5 · 105realizations, respectively. The first set is obtained using Monte-Carlo simulation approach, whereas the second one is determined using Polynomial chaos expansion theory and a basis of Hermite polynomials. The numerically-determined probability density functions are compared against empirical probability histograms (pdfs) by Kolmogorov-Smirnov tests.
机译:本文使用三种不同的实验数据集:压力系数,气动静力和颤振导数,研究了实验误差的传播及其对人行悬索桥临界颤振速度的影响。这三个数据集是从三个不同的实验室的截面模型测量中获得的。数据集用于研究人行悬索桥的三种不同几何形状。使用有限元非线性分析,数值2自由度广义甲板模型和3自由度全桥模型来估计临界颤动速度。检查了由各种实验误差源污染的颤振概率。综合扩展了实验数据集,以得到两个甲板风荷载的总体集,分别具有30和5×·105个实现。第一组是使用蒙特卡洛模拟方法获得的,而第二组是使用多项式混沌展开理论和Hermite多项式的基础确定的。通过Kolmogorov-Smirnov检验将数字确定的概率密度函数与经验概率直方图(pdf)进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号