首页> 外文期刊>Computers & Structures >Artificial Neural Network model to predict the flutter velocity of suspension bridges
【24h】

Artificial Neural Network model to predict the flutter velocity of suspension bridges

机译:人工神经网络模型预测悬架桥的颤动速度

获取原文
获取原文并翻译 | 示例

摘要

This paper discusses the implementation of an artificial neural network (ANN) for predicting the critical flutter velocity of suspension bridges with closed box deck sections. Deck chord length, bridge weight and structural damping were varied. The ANN model was derived and trained using a dataset of critical flutter velocities, calculated using flutter derivatives (FDs) from experiments and by varying geometrical and mechanical parameters. The ANN model was derived by training and comparing two different, preliminary ANNs. The first one was based on thirty sets of experimental FDs. This first set was subsequently used to calibrate the second model, based on surrogate FDs obtained by curve fitting of the experimental data. The surrogate FD dataset was subsequently expanded by Nataf-model Monte Carlo (MC) and Polynomial Chaos Expansion (PCE)-model MC simulation. Finally, the ANN was employed to synthetically generate a larger dataset of critical flutter velocities and estimate the corresponding probability distribution. (C) 2020 Elsevier Ltd. All rights reserved.
机译:本文讨论了用于预测闭合箱甲板部分的悬架桥的临界颤动速度的人工神经网络(ANN)的实现。甲板弦长,桥梁重量和结构阻尼变化。使用临界颤动速度的数据集来导出和训练ANN模型,使用颤动衍生物(FDS)从实验和不同的几何和机械参数计算。 Ann模型是通过训练和比较两种不同的初步安的初步安魂曲来源的。第一个基于三十套实验FD。随后使用该第一组用于基于通过通过实验数据的曲线拟合获得的代理FD来校准第二种模型。 TheRogate FD DataSet随后由Nataf-Model Monte Carlo(MC)和多项式混沌扩展(PCE)-Model MC仿真扩展。最后,使用该ANN合成综合产生较大的临界颤动速度数据集并估计相应的概率分布。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号