首页> 外文期刊>Engineering Applications of Artificial Intelligence >Prediction of anterior scoliotic spinal curve from trunk surface using support vector regression
【24h】

Prediction of anterior scoliotic spinal curve from trunk surface using support vector regression

机译:基于支持向量回归的躯干表面前路脊柱侧弯曲线预测

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a framework for the training of learning systems for regression when (ⅰ) the number of examples is small and contains interdependencies, and (ⅱ) each sample consists of large quantities of discrete data that are functional in nature. The objective is to achieve robust yet nonlinear relations between inputs and outputs. In this study, laser scans of the trunk surface and reconstructions of spinal data from X-rays from scoliosis patients were functionally represented as surfaces and curves. Leading functional principal component coefficients thereof constituted comprehensive features, and achieved sufficient dimensionality reduction for the prediction of spine from trunk. As a learning method, support vector regression (SVR) was chosen for its strong generalizability capability that stems from penalizing model complexity. A first robust prediction in this research application was obtained, with coefficients of determination for leading outputs of 0.70 and 0.82, respectively, in the test set. Those translated to a spinal curve prediction L_2-error of 3.61 mm, comparable to measurement error in data.
机译:当(ⅰ)样本数量少且包含相互依赖性,并且(ⅱ)每个样本都包含大量具有实际功能的离散数据时,本文提出了一种用于回归学习系统的训练框架。目的是实现输入和输出之间的稳健而非线性的关系。在这项研究中,躯干表面的激光扫描和脊柱侧弯患者X射线的脊柱数据重建在功能上被表示为表面和曲线。其领先的功能主成分系数构成了综合特征,并实现了充分的降维,可用于从树干预测脊柱。作为一种学习方法,选择支持向量回归(SVR)的原因是它具有强大的可归纳性,而归因于惩罚模型的复杂性。在该研究应用中获得了第一个稳健的预测,测试集中领先输出的确定系数分别为0.70和0.82。那些转化为脊柱曲线预测L_2误差为3.61 mm,与数据中的测量误差相当。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号