首页> 外文期刊>Engineering Applications of Artificial Intelligence >Genetic algorithm-trained radial basis function neural networks for modelling photovoltaic panels
【24h】

Genetic algorithm-trained radial basis function neural networks for modelling photovoltaic panels

机译:遗传算法训练的径向基函数神经网络用于光伏板建模

获取原文
获取原文并翻译 | 示例

摘要

Radial basis function neural networks (RBFNs) can be applied to model the Ⅰ-Ⅴ characteristics and maximum power points (MPPs) of photovoltaic (PV) panels. The key issue for training an RBFN lies in determining the number of radial basis functions (RBFs) in the hidden layer. This paper presents a genetic algorithms-based RBFN training scheme to search for the optimal number of RBFs using only the input samples of a PV panel. The performance of the trained RBFN is comparable with that of the conventional model and the training algorithm is computationally efficient. The trained RBFNs have been applied to predict MPPs of two different practical PV panels. The results obtained are accurate enough for applying the models to control the PV systems for tracking the optimal power points.
机译:径向基函数神经网络(RBFNs)可用于对光伏(PV)面板的Ⅰ-Ⅴ特性和最大功率点(MPP)进行建模。训练RBFN的关键问题在于确定隐藏层中径向基函数(RBF)的数量。本文提出了一种基于遗传算法的RBFN训练方案,仅使用PV面板的输入样本即可搜索RBF的最佳数量。训练后的RBFN的性能可与常规模型相媲美,并且训练算法在计算上是有效的。训练有素的RBFN已应用于预测两种不同的实际PV面板的MPP。获得的结果足够准确,足以将模型应用于控制光伏系统以跟踪最佳功率点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号