首页> 外文OA文献 >Novel Technique of Sizing the Stand-Alone Photovoltaic Systems Using the Radial Basis Function Neural Networks: Application in Isolated Sites
【2h】

Novel Technique of Sizing the Stand-Alone Photovoltaic Systems Using the Radial Basis Function Neural Networks: Application in Isolated Sites

机译:利用径向基函数神经网络确定独立光伏系统尺寸的新技术:在孤立站点中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The objective of this work is to investigate the Radial BasisFunction Neural Networks (RBFN) to identifying andmodeling the optimal sizing couples of stand-alonephotovoltaic (PV) system using a minimum of input data,These optimal couples allow to the users of stand-alone PVsystems to determine the number of solar panel modulesand storage batteries necessary to satisfy a givenconsumption. The advantage of this model is to estimate ofthe sizing PV system in any site in Algeria particularly inisolated sites, where the global solar radiation data is notalways available. A RBFN has been trained by using 200known sizing couples data corresponding to 200 locations.In this way, it was trained to accept and even handle anumber of unusual case, known sizing couples weresubsequently used to investigate the accuracy of predictionthe training of the RBFN model was performed withadequate accuracy. Subsequently, the unknown validationsizing couples set produced very set accurate predictionswith the correlation coefficient between the actual and theRBFN model identified data of 98% was obtained. Thisresult indicates that the proposed method can besuccessfully used for estimating of optimal sizing couplesof PV systems for any locations in Algeria, but themethodology can be generalized using different locations inthe world.
机译:这项工作的目的是研究径向基函数神经网络(RBFN),以使用最少的输入数据来识别和建模独立光伏(PV)系统的最佳尺寸对,这些最佳对可允许独立PV系统的用户使用确定满足给定消耗所需的太阳能电池板模块和蓄电池的数量。该模型的优点是可以估算阿尔及利亚任何地点(特别是孤立地点)的光伏系统规模,这些地点始终无法获得全球太阳辐射数据。 RBFN已通过使用200个对应于200个位置的已知上浆夫妇数据进行了训练,从而对它进行了训练以接受甚至处理许多不同情况,随后使用已知的上浆夫妇来研究预测的准确性。以足够的精度执行。随后,未知的验证对集合产生了非常准确的预测,实际和RBFN模型识别数据之间的相关系数为98%。结果表明,所提出的方法可以成功地用于估计阿尔及利亚任何位置的光伏系统的最佳尺寸对,但是该方法可以在世界上不同的位置进行推广。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号